1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
|
/* -*- c++ -*- */
/*
* Copyright 2004,2010-2012,2014 Free Software Foundation, Inc.
*
* This file is part of GNU Radio
*
* SPDX-License-Identifier: GPL-3.0-or-later
*
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "clock_recovery_mm_ff_impl.h"
#include <gnuradio/io_signature.h>
#include <gnuradio/math.h>
#include <stdexcept>
namespace gr {
namespace digital {
clock_recovery_mm_ff::sptr clock_recovery_mm_ff::make(
float omega, float gain_omega, float mu, float gain_mu, float omega_relative_limit)
{
return gnuradio::get_initial_sptr(new clock_recovery_mm_ff_impl(
omega, gain_omega, mu, gain_mu, omega_relative_limit));
}
clock_recovery_mm_ff_impl::clock_recovery_mm_ff_impl(
float omega, float gain_omega, float mu, float gain_mu, float omega_relative_limit)
: block("clock_recovery_mm_ff",
io_signature::make(1, 1, sizeof(float)),
io_signature::make(1, 1, sizeof(float))),
d_mu(mu),
d_gain_mu(gain_mu),
d_gain_omega(gain_omega),
d_omega_relative_limit(omega_relative_limit),
d_last_sample(0),
d_interp(new filter::mmse_fir_interpolator_ff())
{
if (omega < 1)
throw std::out_of_range("clock rate must be > 0");
if (gain_mu < 0 || gain_omega < 0)
throw std::out_of_range("Gains must be non-negative");
set_omega(omega); // also sets min and max omega
set_inverse_relative_rate(omega);
enable_update_rate(true); // fixes tag propagation through variable rate block
}
clock_recovery_mm_ff_impl::~clock_recovery_mm_ff_impl() { delete d_interp; }
void clock_recovery_mm_ff_impl::forecast(int noutput_items,
gr_vector_int& ninput_items_required)
{
unsigned ninputs = ninput_items_required.size();
for (unsigned i = 0; i < ninputs; i++)
ninput_items_required[i] =
(int)ceil((noutput_items * d_omega) + d_interp->ntaps());
}
static inline float slice(float x) { return x < 0 ? -1.0F : 1.0F; }
void clock_recovery_mm_ff_impl::set_omega(float omega)
{
d_omega = omega;
d_omega_mid = omega;
d_omega_lim = d_omega_mid * d_omega_relative_limit;
}
int clock_recovery_mm_ff_impl::general_work(int noutput_items,
gr_vector_int& ninput_items,
gr_vector_const_void_star& input_items,
gr_vector_void_star& output_items)
{
const float* in = (const float*)input_items[0];
float* out = (float*)output_items[0];
int ii = 0; // input index
int oo = 0; // output index
int ni = ninput_items[0] - d_interp->ntaps(); // don't use more input than this
float mm_val;
while (oo < noutput_items && ii < ni) {
// produce output sample
out[oo] = d_interp->interpolate(&in[ii], d_mu);
mm_val = slice(d_last_sample) * out[oo] - slice(out[oo]) * d_last_sample;
d_last_sample = out[oo];
d_omega = d_omega + d_gain_omega * mm_val;
d_omega = d_omega_mid + gr::branchless_clip(d_omega - d_omega_mid, d_omega_lim);
d_mu = d_mu + d_omega + d_gain_mu * mm_val;
ii += (int)floor(d_mu);
d_mu = d_mu - floor(d_mu);
oo++;
}
consume_each(ii);
return oo;
}
} /* namespace digital */
} /* namespace gr */
|