1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
|
#!/usr/bin/env python
#
# Copyright 2011,2012 Free Software Foundation, Inc.
#
# This file is part of GNU Radio
#
# GNU Radio is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 3, or (at your option)
# any later version.
#
# GNU Radio is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with GNU Radio; see the file COPYING. If not, write to
# the Free Software Foundation, Inc., 51 Franklin Street,
# Boston, MA 02110-1301, USA.
#
from gnuradio import gr, digital, filter
from gnuradio import eng_notation
from gnuradio.eng_option import eng_option
from optparse import OptionParser
try:
import scipy
except ImportError:
print "Error: could not import scipy (http://www.scipy.org/)"
sys.exit(1)
try:
import pylab
except ImportError:
print "Error: could not import pylab (http://matplotlib.sourceforge.net/)"
sys.exit(1)
class example_costas(gr.top_block):
def __init__(self, N, sps, rolloff, ntaps, bw, noise, foffset, toffset, poffset):
gr.top_block.__init__(self)
rrc_taps = gr.firdes.root_raised_cosine(
sps, sps, 1.0, rolloff, ntaps)
data = 2.0*scipy.random.randint(0, 2, N) - 1.0
data = scipy.exp(1j*poffset) * data
self.src = gr.vector_source_c(data.tolist(), False)
self.rrc = filter.interp_fir_filter_ccf(sps, rrc_taps)
self.chn = filter.channel_model(noise, foffset, toffset)
self.cst = digital.costas_loop_cc(bw, 2)
self.vsnk_src = gr.vector_sink_c()
self.vsnk_cst = gr.vector_sink_c()
self.vsnk_frq = gr.vector_sink_f()
self.connect(self.src, self.rrc, self.chn, self.cst, self.vsnk_cst)
self.connect(self.rrc, self.vsnk_src)
self.connect((self.cst,1), self.vsnk_frq)
def main():
parser = OptionParser(option_class=eng_option, conflict_handler="resolve")
parser.add_option("-N", "--nsamples", type="int", default=2000,
help="Set the number of samples to process [default=%default]")
parser.add_option("-S", "--sps", type="int", default=4,
help="Set the samples per symbol [default=%default]")
parser.add_option("-r", "--rolloff", type="eng_float", default=0.35,
help="Set the rolloff factor [default=%default]")
parser.add_option("-W", "--bandwidth", type="eng_float", default=2*scipy.pi/100.0,
help="Set the loop bandwidth [default=%default]")
parser.add_option("-n", "--ntaps", type="int", default=45,
help="Set the number of taps in the filters [default=%default]")
parser.add_option("", "--noise", type="eng_float", default=0.0,
help="Set the simulation noise voltage [default=%default]")
parser.add_option("-f", "--foffset", type="eng_float", default=0.0,
help="Set the simulation's normalized frequency offset (in Hz) [default=%default]")
parser.add_option("-t", "--toffset", type="eng_float", default=1.0,
help="Set the simulation's timing offset [default=%default]")
parser.add_option("-p", "--poffset", type="eng_float", default=0.707,
help="Set the simulation's phase offset [default=%default]")
(options, args) = parser.parse_args ()
# Adjust N for the interpolation by sps
options.nsamples = options.nsamples // options.sps
# Set up the program-under-test
put = example_costas(options.nsamples, options.sps, options.rolloff,
options.ntaps, options.bandwidth, options.noise,
options.foffset, options.toffset, options.poffset)
put.run()
data_src = scipy.array(put.vsnk_src.data())
# Convert the FLL's LO frequency from rads/sec to Hz
data_frq = scipy.array(put.vsnk_frq.data()) / (2.0*scipy.pi)
# adjust this to align with the data.
data_cst = scipy.array(3*[0,]+list(put.vsnk_cst.data()))
# Plot the Costas loop's LO frequency
f1 = pylab.figure(1, figsize=(12,10), facecolor='w')
s1 = f1.add_subplot(2,2,1)
s1.plot(data_frq)
s1.set_title("Costas LO")
s1.set_xlabel("Samples")
s1.set_ylabel("Frequency (normalized Hz)")
# Plot the IQ symbols
s3 = f1.add_subplot(2,2,2)
s3.plot(data_src.real, data_src.imag, "o")
s3.plot(data_cst.real, data_cst.imag, "rx")
s3.set_title("IQ")
s3.set_xlabel("Real part")
s3.set_ylabel("Imag part")
s3.set_xlim([-2, 2])
s3.set_ylim([-2, 2])
# Plot the symbols in time
s4 = f1.add_subplot(2,2,3)
s4.set_position([0.125, 0.05, 0.775, 0.4])
s4.plot(data_src.real, "o-")
s4.plot(data_cst.real, "rx-")
s4.set_title("Symbols")
s4.set_xlabel("Samples")
s4.set_ylabel("Real Part of Signals")
pylab.show()
if __name__ == "__main__":
try:
main()
except KeyboardInterrupt:
pass
|