summaryrefslogtreecommitdiff
path: root/gr-blocks/python/blocks/qa_moving_average.py
blob: b76f81392d4e643edd77c6fa540f83b6256e2bb6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
#!/usr/bin/env python
#
# Copyright 2013,2017 Free Software Foundation, Inc.
#
# This file is part of GNU Radio
#
# GNU Radio is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 3, or (at your option)
# any later version.
#
# GNU Radio is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with GNU Radio; see the file COPYING.  If not, write to
# the Free Software Foundation, Inc., 51 Franklin Street,
# Boston, MA 02110-1301, USA.
#

from gnuradio import gr, gr_unittest, blocks

import math, random

def make_random_complex_tuple(L, scale=1):
    result = []
    for x in range(L):
        result.append(scale*complex(2*random.random()-1,
                                    2*random.random()-1))
    return tuple(result)

def make_random_float_tuple(L, scale=1):
    result = []
    for x in range(L):
        result.append(scale*(2*random.random()-1))
    return tuple(result)

class test_moving_average(gr_unittest.TestCase):

    def setUp(self):
        self.tb = gr.top_block()

    def tearDown(self):
        self.tb = None

    # These tests will always pass and are therefore useless. 100 random numbers [-1,1) are
    # getting summed up and scaled with 0.001. Then, an assertion verifies a result near 0,
    # which is the case even if the block is malfunctioning.

    def test_01(self):
        tb = self.tb

        N = 10000
        seed = 0
        data = make_random_float_tuple(N, 1)
        expected_result = N*[0,]

        src = blocks.vector_source_f(data, False)
        op  = blocks.moving_average_ff(100, 0.001)
        dst = blocks.vector_sink_f()

        tb.connect(src, op)
        tb.connect(op, dst)
        tb.run()

        dst_data = dst.data()

        # make sure result is close to zero
        self.assertFloatTuplesAlmostEqual(expected_result, dst_data, 1)

    def test_02(self):
        tb = self.tb

        N = 10000
        seed = 0
        data = make_random_complex_tuple(N, 1)
        expected_result = N*[0,]

        src = blocks.vector_source_c(data, False)
        op  = blocks.moving_average_cc(100, 0.001)
        dst = blocks.vector_sink_c()

        tb.connect(src, op)
        tb.connect(op, dst)
        tb.run()

        dst_data = dst.data()

        # make sure result is close to zero
        self.assertComplexTuplesAlmostEqual(expected_result, dst_data, 1)

    # This tests implement own moving average to verify correct behaviour of the block

    def test_03(self):
        tb = self.tb

        vlen = 5
        N = 10*vlen
        seed = 0
        data = make_random_float_tuple(N, 2**10)
        data = [int(d*1000) for d in data]
        src = blocks.vector_source_i(data, False)
        one_to_many = blocks.stream_to_streams(gr.sizeof_int, vlen)
        one_to_vector = blocks.stream_to_vector(gr.sizeof_int, vlen)
        many_to_vector = blocks.streams_to_vector(gr.sizeof_int, vlen)
        isolated  = [ blocks.moving_average_ii(100, 1) for i in range(vlen)]
        dut = blocks.moving_average_ii(100, 1, vlen=vlen)
        dut_dst = blocks.vector_sink_i(vlen=vlen)
        ref_dst = blocks.vector_sink_i(vlen=vlen)

        tb.connect(src, one_to_many)
        tb.connect(src, one_to_vector, dut, dut_dst)
        tb.connect(many_to_vector, ref_dst)
        for idx, single in enumerate(isolated):
            tb.connect((one_to_many,idx), single, (many_to_vector,idx))

        tb.run()

        dut_data = dut_dst.data()
        ref_data = ref_dst.data()

        # make sure result is close to zero
        self.assertTupleEqual(dut_data, ref_data)

    def test_04(self):
        tb = self.tb

        N = 10000  # number of samples
        history = 100  # num of samples to average
        data = make_random_complex_tuple(N, 1)  # generate random data

        #  pythonic MA filter
        data_padded = (history-1)*[0.0+1j*0.0]+list(data)  # history  
        expected_result = []
        moving_sum = sum(data_padded[:history-1])
        for i in range(N):
            moving_sum += data_padded[i+history-1]
            expected_result.append(moving_sum)
            moving_sum -= data_padded[i]

        src = blocks.vector_source_c(data, False)
        op  = blocks.moving_average_cc(history, 1)
        dst = blocks.vector_sink_c()
        
        tb.connect(src, op)
        tb.connect(op, dst)
        tb.run()
    
        dst_data = dst.data()

        # make sure result is close to zero
        self.assertComplexTuplesAlmostEqual(expected_result, dst_data, 4)

if __name__ == '__main__':
    gr_unittest.run(test_moving_average, "test_moving_average.xml")