1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
|
/* -*- c++ -*- */
/*
* Copyright 2004,2013 Free Software Foundation, Inc.
*
* This file is part of GNU Radio
*
* GNU Radio is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3, or (at your option)
* any later version.
*
* GNU Radio is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNU Radio; see the file COPYING. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street,
* Boston, MA 02110-1301, USA.
*/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#include <qa_fxpt_nco.h>
#include <blocks/fxpt_nco.h>
#include <blocks/nco.h>
#include <cppunit/TestAssert.h>
#include <iostream>
#include <stdio.h>
#include <unistd.h>
#include <math.h>
using namespace gr::blocks;
static const float SIN_COS_TOLERANCE = 1e-5;
//static const float SIN_COS_FREQ = 5003;
static const float SIN_COS_FREQ = 4096;
static const int SIN_COS_BLOCK_SIZE = 100000;
static double max_d(double a, double b)
{
return fabs(a) > fabs(b) ? a : b;
}
void
qa_fxpt_nco::t0()
{
nco<float,float> ref_nco;
fxpt_nco new_nco;
double max_error = 0, max_phase_error = 0;
ref_nco.set_freq((float)(2 * M_PI / SIN_COS_FREQ));
new_nco.set_freq((float)(2 * M_PI / SIN_COS_FREQ));
CPPUNIT_ASSERT_DOUBLES_EQUAL(ref_nco.get_freq(), new_nco.get_freq(), SIN_COS_TOLERANCE);
for(int i = 0; i < SIN_COS_BLOCK_SIZE; i++) {
float ref_sin = ref_nco.sin();
float new_sin = new_nco.sin();
//printf ("i = %6d\n", i);
CPPUNIT_ASSERT_DOUBLES_EQUAL(ref_sin, new_sin, SIN_COS_TOLERANCE);
max_error = max_d(max_error, ref_sin-new_sin);
float ref_cos = ref_nco.cos();
float new_cos = new_nco.cos();
CPPUNIT_ASSERT_DOUBLES_EQUAL(ref_cos, new_cos, SIN_COS_TOLERANCE);
max_error = max_d(max_error, ref_cos-new_cos);
ref_nco.step();
new_nco.step();
CPPUNIT_ASSERT_DOUBLES_EQUAL(ref_nco.get_phase(), new_nco.get_phase(), SIN_COS_TOLERANCE);
max_phase_error = max_d(max_phase_error, ref_nco.get_phase()-new_nco.get_phase());
}
// printf("Fxpt max error %.9f, max phase error %.9f\n", max_error, max_phase_error);
}
void
qa_fxpt_nco::t1()
{
nco<float,float> ref_nco;
fxpt_nco new_nco;
gr_complex ref_block[SIN_COS_BLOCK_SIZE];
gr_complex new_block[SIN_COS_BLOCK_SIZE];
double max_error = 0;
ref_nco.set_freq((float)(2 * M_PI / SIN_COS_FREQ));
new_nco.set_freq((float)(2 * M_PI / SIN_COS_FREQ));
CPPUNIT_ASSERT_DOUBLES_EQUAL(ref_nco.get_freq(), new_nco.get_freq(), SIN_COS_TOLERANCE);
ref_nco.sincos((gr_complex*)ref_block, SIN_COS_BLOCK_SIZE);
new_nco.sincos((gr_complex*)new_block, SIN_COS_BLOCK_SIZE);
for(int i = 0; i < SIN_COS_BLOCK_SIZE; i++) {
CPPUNIT_ASSERT_DOUBLES_EQUAL(ref_block[i].real(), new_block[i].real(), SIN_COS_TOLERANCE);
max_error = max_d(max_error, ref_block[i].real()-new_block[i].real());
CPPUNIT_ASSERT_DOUBLES_EQUAL(ref_block[i].imag(), new_block[i].imag(), SIN_COS_TOLERANCE);
max_error = max_d(max_error, ref_block[i].imag()-new_block[i].imag());
}
CPPUNIT_ASSERT_DOUBLES_EQUAL(ref_nco.get_phase(), new_nco.get_phase(), SIN_COS_TOLERANCE);
// printf("Fxpt max error %.9f, max phase error %.9f\n", max_error, max_phase_error);
}
void
qa_fxpt_nco::t2()
{
}
void
qa_fxpt_nco::t3()
{
}
|