1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
|
/* -*- c++ -*- */
/*
* Copyright 2007,2010,2012-2013 Free Software Foundation, Inc.
*
* This file is part of GNU Radio
*
* SPDX-License-Identifier: GPL-3.0-or-later
*
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "delay_impl.h"
#include <gnuradio/io_signature.h>
#include <string.h>
namespace gr {
namespace blocks {
delay::sptr delay::make(size_t itemsize, int delay)
{
return gnuradio::get_initial_sptr(new delay_impl(itemsize, delay));
}
delay_impl::delay_impl(size_t itemsize, int delay)
: block("delay",
io_signature::make(1, -1, itemsize),
io_signature::make(1, -1, itemsize)),
d_itemsize(itemsize)
{
if (delay < 0) {
throw std::runtime_error("delay: Cannot initialize block with a delay < 0.");
}
set_dly(delay);
d_delta = 0;
}
delay_impl::~delay_impl() {}
void delay_impl::forecast(int noutput_items, gr_vector_int& ninput_items_required)
{
// make sure all inputs have noutput_items available
unsigned ninputs = ninput_items_required.size();
for (unsigned i = 0; i < ninputs; i++)
ninput_items_required[i] = noutput_items;
}
void delay_impl::set_dly(int d)
{
// only set a new delta if there is a change in the delay; this
// protects from quickly-repeated calls to this function that
// would end with d_delta=0.
if (d != dly()) {
gr::thread::scoped_lock l(d_mutex_delay);
int old = dly();
set_history(d + 1);
declare_sample_delay(history() - 1);
d_delta += dly() - old;
}
}
int delay_impl::general_work(int noutput_items,
gr_vector_int& ninput_items,
gr_vector_const_void_star& input_items,
gr_vector_void_star& output_items)
{
gr::thread::scoped_lock l(d_mutex_delay);
assert(input_items.size() == output_items.size());
const char* iptr;
char* optr;
int cons, ret;
// No change in delay; just memcpy ins to outs
if (d_delta == 0) {
for (size_t i = 0; i < input_items.size(); i++) {
iptr = (const char*)input_items[i];
optr = (char*)output_items[i];
std::memcpy(optr, iptr, noutput_items * d_itemsize);
}
cons = noutput_items;
ret = noutput_items;
}
// Skip over d_delta items on the input
else if (d_delta < 0) {
int n_to_copy, n_adj;
int delta = -d_delta;
n_to_copy = std::max(0, noutput_items - delta);
n_adj = std::min(delta, noutput_items);
for (size_t i = 0; i < input_items.size(); i++) {
iptr = (const char*)input_items[i];
optr = (char*)output_items[i];
std::memcpy(optr, iptr + delta * d_itemsize, n_to_copy * d_itemsize);
}
cons = noutput_items;
ret = n_to_copy;
delta -= n_adj;
d_delta = -delta;
}
// produce but not consume (inserts zeros)
else { // d_delta > 0
int n_from_input, n_padding;
n_from_input = std::max(0, noutput_items - d_delta);
n_padding = std::min(d_delta, noutput_items);
for (size_t i = 0; i < input_items.size(); i++) {
iptr = (const char*)input_items[i];
optr = (char*)output_items[i];
std::memset(optr, 0, n_padding * d_itemsize);
std::memcpy(optr, iptr, n_from_input * d_itemsize);
}
cons = n_from_input;
ret = noutput_items;
d_delta -= n_padding;
}
consume_each(cons);
return ret;
}
} /* namespace blocks */
} /* namespace gr */
|