1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
|
/* -*- c++ -*- */
/*
* Copyright 2005,2013 Free Software Foundation, Inc.
*
* This file is part of GNU Radio
*
* GNU Radio is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3, or (at your option)
* any later version.
*
* GNU Radio is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNU Radio; see the file COPYING. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street,
* Boston, MA 02110-1301, USA.
*/
#ifndef _GR_VCO_H_
#define _GR_VCO_H_
#include <vector>
#include <gr_sincos.h>
#include <cmath>
#include <gr_complex.h>
namespace gr {
namespace blocks {
/*!
* \brief base class template for Voltage Controlled Oscillator (VCO)
* \ingroup misc
*
* Simple calculations of sine and cosine. Set the phase using
* set_phase or adjust it by some delta using adjust_phase. Sine
* and cosine can be retrieved together with sincos(sinx, cosx)
* where sinx and cosx are the returned values at the current
* phase. They can be retrieved individually using either sin() or
* cos().
*
* \sa fxpt_nco.h for fixed-point implementation.
*/
template<class o_type, class i_type>
class vco
{
public:
vco() : d_phase(0) {}
virtual ~vco() {}
//! Set the current phase \p angle in radians
void set_phase(double angle) {
d_phase = angle;
}
//! Update the current phase in radians by \p delta_phase
void adjust_phase(double delta_phase) {
d_phase += delta_phase;
if(fabs(d_phase) > M_PI) {
while(d_phase > M_PI)
d_phase -= 2*M_PI;
while(d_phase < -M_PI)
d_phase += 2*M_PI;
}
}
//! Get the current phase in radians
double get_phase() const { return d_phase; }
//! compute sin and cos for current phase angle
void sincos(float *sinx, float *cosx) const;
//! compute cos or sin for current phase angle
float cos() const { return std::cos(d_phase); }
float sin() const { return std::sin(d_phase); }
//! compute a block at a time
void cos(float *output, const float *input, int noutput_items,
double k, double ampl = 1.0);
protected:
double d_phase;
};
template<class o_type, class i_type>
void
vco<o_type,i_type>::sincos(float *sinx, float *cosx) const
{
gr_sincosf(d_phase, sinx, cosx);
}
template<class o_type, class i_type>
void
vco<o_type,i_type>::cos(float *output, const float *input, int noutput_items,
double k, double ampl)
{
for(int i = 0; i < noutput_items; i++) {
output[i] = cos() * ampl;
adjust_phase(input[i] * k);
}
}
} /* namespace blocks */
} /* namespace gr */
#endif /* _VCO_H_ */
|