summaryrefslogtreecommitdiff
path: root/gr-blocks/include/blocks/fxpt_nco.h
blob: 7db20fbb3ab99309b949332af6815b3244328c85 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
/* -*- c++ -*- */
/*
 * Copyright 2002,2004,2013 Free Software Foundation, Inc.
 *
 * This file is part of GNU Radio
 *
 * GNU Radio is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 3, or (at your option)
 * any later version.
 *
 * GNU Radio is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with GNU Radio; see the file COPYING.  If not, write to
 * the Free Software Foundation, Inc., 51 Franklin Street,
 * Boston, MA 02110-1301, USA.
 */

#ifndef INCLUDED_GR_FXPT_NCO_H
#define INCLUDED_GR_FXPT_NCO_H

#include <blocks/api.h>
#include <blocks/fxpt.h>
#include <gr_complex.h>

namespace gr {
  namespace blocks {

    /*!
     * \brief Numerically Controlled Oscillator (NCO)
     * \ingroup misc
     *
     * Calculate sine and cosine based on the current phase. This
     * class has multiple ways to calculate sin/cos and when
     * requensting a range will increment the phase based on a
     * frequency, which can be set using set_freq. Similar interfaces
     * to the fxpt_vco can also be used to set or adjust the current
     * phase.
     */
    class fxpt_nco 
    {
    private:
      uint32_t d_phase;
      int32_t  d_phase_inc;

    public:
      fxpt_nco() : d_phase(0), d_phase_inc(0) {}

      ~fxpt_nco() {}

      //! Set the current phase \p angle in radians 
      void set_phase(float angle) {
        d_phase = fxpt::float_to_fixed(angle);
      }

      //! Update the current phase in radians by \p delta_phase
      void adjust_phase(float delta_phase) {
        d_phase += fxpt::float_to_fixed(delta_phase);
      }

      //! angle_rate is in radians / step
      void set_freq(float angle_rate) {
        d_phase_inc = fxpt::float_to_fixed(angle_rate);
      }

      //! angle_rate is a delta in radians / step
      void adjust_freq(float delta_angle_rate) {
        d_phase_inc += fxpt::float_to_fixed(delta_angle_rate);
      }

      //! increment current phase angle
      void step() {
        d_phase += d_phase_inc;
      }

      //! increment current phase angle n times
      void step(int n) {
        d_phase += d_phase_inc * n;
      }

      //! units are radians / step
      float get_phase() const { return fxpt::fixed_to_float(d_phase); }
      float get_freq() const { return fxpt::fixed_to_float(d_phase_inc); }

      //! compute sin and cos for current phase angle
      void sincos(float *sinx, float *cosx) const
      {
        *sinx = fxpt::sin(d_phase);
        *cosx = fxpt::cos(d_phase);
      }

      //! compute cos and sin for a block of phase angles
      void sincos(gr_complex *output, int noutput_items, double ampl=1.0)
      {
        for(int i = 0; i < noutput_items; i++) {
          output[i] = gr_complex(fxpt::cos(d_phase) * ampl,
                                 fxpt::sin(d_phase) * ampl);
          step();
        }
      }

      //! compute sin for a block of phase angles
      void sin(float *output, int noutput_items, double ampl=1.0)
      {
        for(int i = 0; i < noutput_items; i++) {
          output[i] = (float)(fxpt::sin(d_phase) * ampl);
          step();
        }
      }

      //! compute cos for a block of phase angles
      void cos(float *output, int noutput_items, double ampl=1.0)
      {
        for(int i = 0; i < noutput_items; i++) {
          output[i] = (float)(fxpt::cos(d_phase) * ampl);
          step();
        }
      }

      //! compute sin for a block of phase angles
      void sin(short *output, int noutput_items, double ampl=1.0)
      {
        for(int i = 0; i < noutput_items; i++) {
          output[i] = (short)(fxpt::sin(d_phase) * ampl);
          step();
        }
      }

      //! compute cos for a block of phase angles
      void cos(short *output, int noutput_items, double ampl=1.0)
      {
        for(int i = 0; i < noutput_items; i++) {
          output[i] = (short)(fxpt::cos(d_phase) * ampl);
          step();
        }
      }

      //! compute sin for a block of phase angles
      void sin(int *output, int noutput_items, double ampl=1.0)
      {
        for(int i = 0; i < noutput_items; i++) {
          output[i] = (int)(fxpt::sin(d_phase) * ampl);
          step();
        }
      }

      //! compute cos for a block of phase angles
      void cos(int *output, int noutput_items, double ampl=1.0)
      {
        for(int i = 0; i < noutput_items; i++) {
          output[i] = (int)(fxpt::cos(d_phase) * ampl);
          step();
        }
      }

      //! compute cos or sin for current phase angle
      float cos() const { return fxpt::cos(d_phase); }
      float sin() const { return fxpt::sin(d_phase); }
    };

  } /* namespace blocks */
} /* namespace gr */

#endif /* INCLUDED_GR_FXPT_NCO_H */