1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
|
#!/usr/bin/env /usr/bin/python
#
# Copyright 2004, 2013 Free Software Foundation, Inc.
#
# This file is part of GNU Radio
#
# GNU Radio is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2, or (at your option)
# any later version.
#
# GNU Radio is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with GNU Radio; see the file COPYING. If not, write to
# the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
# Boston, MA 02111-1307, USA.
#
# This module starts the atsc processing chain taking the captured
# off-air signal created with:
#
# uhd_rx_cfile.py --samp-rate=6.4e6
# -f <center of tv signal channel freq>
# -g <appropriate gain for best signal / noise>
# -s output shorts
#
# This python script converts from interleaved shorts to the complex data type,
# then multiplies the sample rate by 3, from 6.4e6 to 19.2e6
# complex samples / sec, then lowpass filters with a cutoff of 3.2MHz
# and a transition band width of .5MHz. Center of the tv channels is
# now at 0 with edges at -3.2MHz and 3.2MHz. This puts the pilot at
# -3MHz + 309KHz. Next a root raised cosine filter is applied to match the one
# in the transmitter and thus reduce ISI. The phased locked loop then locks to
# the pilot and outputs just the real part of the signal ( as information is
# not stored in the phase with atsc ), this is then feed to the bit lock
# loop, this looks for the bit sync marker put at the beginning of every segment
# field, this then adjusts the timing so the amplitude will be sampled at the
# correct sample ( sub-sample is used in this case ).
#
# Output is float.
from gnuradio import gr, analog, atsc
from gnuradio import blocks
from gnuradio import filter
import sys, math, os
def graph (args):
print os.getpid()
nargs = len(args)
if nargs == 2:
infile = args[0]
outfile = args[1]
else:
raise ValueError('usage: interp.py input_file output_file.ts\n')
input_rate = 19.2e6
IF_freq = 5.75e6
tb = gr.top_block()
# Read from input file
srcf = blocks.file_source(gr.sizeof_short, infile)
# Convert interleaved shorts (I,Q,I,Q) to complex
is2c = blocks.interleaved_short_to_complex()
# 1/2 as wide because we're designing lp filter
symbol_rate = atsc.ATSC_SYMBOL_RATE/2.
NTAPS = 279
tt = filter.firdes.root_raised_cosine (1.0, input_rate / 3, symbol_rate, .1152, NTAPS)
rrc = filter.fir_filter_ccf(1, tt)
# Interpolate Filter our 6MHz wide signal centered at 0
ilp_coeffs = filter.firdes.low_pass(1, input_rate, 3.2e6, .5e6, filter.firdes.WIN_HAMMING)
ilp = filter.interp_fir_filter_ccf(3, ilp_coeffs)
# Move the center frequency to 5.75MHz ( this won't be needed soon )
duc_coeffs = filter.firdes.low_pass ( 1, 19.2e6, 9e6, 1e6, filter.firdes.WIN_HAMMING )
duc = filter.freq_xlating_fir_filter_ccf ( 1, duc_coeffs, -5.75e6, 19.2e6 )
# fpll input is float
c2f = blocks.complex_to_float()
# Phase locked loop
fpll = atsc.fpll()
# Clean fpll output
lp_coeffs2 = filter.firdes.low_pass (1.0,
input_rate,
5.75e6,
120e3,
filter.firdes.WIN_HAMMING);
lp_filter = filter.fir_filter_fff (1, lp_coeffs2)
# Remove pilot ( at DC now )
iir = filter.single_pole_iir_filter_ff(1e-5)
remove_dc = blocks.sub_ff()
# Bit Timing Loop, Field Sync Checker and Equalizer
btl = atsc.bit_timing_loop()
fsc = atsc.fs_checker()
eq = atsc.equalizer()
fsd = atsc.field_sync_demux()
# Viterbi
viterbi = atsc.viterbi_decoder()
deinter = atsc.deinterleaver()
rs_dec = atsc.rs_decoder()
derand = atsc.derandomizer()
depad = atsc.depad()
# Write to output file
outf = blocks.file_sink(gr.sizeof_char,outfile)
# Connect it all together
tb.connect( srcf, is2c, rrc, ilp, duc, c2f, fpll, lp_filter)
tb.connect( lp_filter, iir )
tb.connect( lp_filter, (remove_dc, 0) )
tb.connect( iir, (remove_dc, 1) )
tb.connect( remove_dc, btl )
tb.connect( (btl, 0), (fsc, 0), (eq, 0), (fsd,0) )
tb.connect( (btl, 1), (fsc, 1), (eq, 1), (fsd,1) )
tb.connect( fsd, viterbi, deinter, rs_dec, derand, depad, outf )
tb.run()
if __name__ == '__main__':
graph (sys.argv[1:])
|