summaryrefslogtreecommitdiff
path: root/gr-analog/python/analog/qa_fastnoise.py
blob: 3e5e0c3001c5e6b747943349aec167c68917322d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
#!/usr/bin/env python
#
# Copyright 2007,2010,2012 Free Software Foundation, Inc.
#
# This file is part of GNU Radio
#
# SPDX-License-Identifier: GPL-3.0-or-later
#
#

from gnuradio import gr, gr_unittest, analog, blocks
import numpy


class test_fastnoise_source(gr_unittest.TestCase):

    def setUp(self):

        self.num = 2**22
        self.num_items = 10**6
        self.default_args = {"samples": self.num, "seed": 43, "ampl": 1}

    def tearDown(self):
        pass

    def run_test_real(self, form):
        """ Run test case with float input/output
        """
        tb = gr.top_block()
        src = analog.fastnoise_source_f(type=form, **self.default_args)
        head = blocks.head(
            nitems=self.num_items,
            sizeof_stream_item=gr.sizeof_float)
        sink = blocks.vector_sink_f()
        tb.connect(src, head, sink)
        tb.run()
        return numpy.array(sink.data())

    def run_test_complex(self, form):
        """ Run test case with complex input/output
        """
        tb = gr.top_block()
        src = analog.fastnoise_source_c(type=form, **self.default_args)
        head = blocks.head(
            nitems=self.num_items,
            sizeof_stream_item=gr.sizeof_gr_complex)
        sink = blocks.vector_sink_c()
        tb.connect(src, head, sink)
        tb.run()
        return numpy.array(sink.data())

    def test_001_real_uniform_moments(self):

        data = self.run_test_real(analog.GR_UNIFORM)

        self.assertAlmostEqual(min(data), -1, places=4)
        self.assertAlmostEqual(max(data), 1, places=4)

        # mean, variance
        self.assertAlmostEqual(data.mean(), 0, places=2)
        self.assertAlmostEqual(data.var(), (1 - (-1))**2. / 12, places=3)

    def test_001_real_gaussian_moments(self):
        data = self.run_test_real(analog.GR_GAUSSIAN)

        # mean, variance
        self.assertAlmostEqual(data.mean(), 0, places=2)
        self.assertAlmostEqual(data.var(), 1, places=2)

    def test_001_real_laplacian_moments(self):
        data = self.run_test_real(analog.GR_LAPLACIAN)

        # mean, variance
        self.assertAlmostEqual(data.mean(), 0, places=2)
        self.assertAlmostEqual(data.var(), 2, places=2)

    def test_001_complex_uniform_moments(self):
        data = self.run_test_complex(analog.GR_UNIFORM)

        # mean, variance
        self.assertAlmostEqual(data.real.mean(), 0, places=2)
        self.assertAlmostEqual(data.real.var(), 0.5 *
                               (1 - (-1))**2. / 12, places=3)

        self.assertAlmostEqual(data.imag.mean(), 0, places=2)
        self.assertAlmostEqual(data.imag.var(), 0.5 *
                               (1 - (-1))**2. / 12, places=3)

    def test_001_complex_gaussian_moments(self):
        data = self.run_test_complex(analog.GR_GAUSSIAN)

        # mean, variance
        self.assertAlmostEqual(data.real.mean(), 0, places=2)
        self.assertAlmostEqual(data.real.var(), 0.5, places=2)

        self.assertAlmostEqual(data.imag.mean(), 0, places=2)
        self.assertAlmostEqual(data.imag.var(), 0.5, places=2)

    def test_002_real_uniform_reproducibility(self):
        data1 = self.run_test_real(analog.GR_UNIFORM)
        data2 = self.run_test_real(analog.GR_UNIFORM)

        # It's pseudoramdo thus must be equal
        self.assertTrue(numpy.array_equal(data1, data2))

    def test_002_real_gaussian_reproducibility(self):
        data1 = self.run_test_real(analog.GR_GAUSSIAN)
        data2 = self.run_test_real(analog.GR_GAUSSIAN)

        self.assertTrue(numpy.array_equal(data1, data2))

    def test_003_real_uniform_pool(self):
        src = analog.fastnoise_source_f(
            type=analog.GR_UNIFORM, **self.default_args)
        src2 = analog.fastnoise_source_f(
            type=analog.GR_UNIFORM, **self.default_args)
        self.assertTrue(
            numpy.array_equal(
                numpy.array(
                    src.samples()), numpy.array(
                    src2.samples())))

    def test_003_real_gaussian_pool(self):
        src = analog.fastnoise_source_f(
            type=analog.GR_GAUSSIAN, **self.default_args)
        src2 = analog.fastnoise_source_f(
            type=analog.GR_GAUSSIAN, **self.default_args)
        self.assertTrue(
            numpy.array_equal(
                numpy.array(
                    src.samples()), numpy.array(
                    src2.samples())))

    def test_003_cmplx_gaussian_pool(self):
        src = analog.fastnoise_source_c(
            type=analog.GR_GAUSSIAN, **self.default_args)
        src2 = analog.fastnoise_source_c(
            type=analog.GR_GAUSSIAN, **self.default_args)
        self.assertTrue(
            numpy.array_equal(
                numpy.array(
                    src.samples()), numpy.array(
                    src2.samples())))

    def test_003_cmplx_uniform_pool(self):
        src = analog.fastnoise_source_c(
            type=analog.GR_UNIFORM, **self.default_args)
        src2 = analog.fastnoise_source_c(
            type=analog.GR_UNIFORM, **self.default_args)
        self.assertTrue(
            numpy.array_equal(
                numpy.array(
                    src.samples()), numpy.array(
                    src2.samples())))

    def test_003_real_laplacian_pool(self):
        src = analog.fastnoise_source_f(
            type=analog.GR_LAPLACIAN, **self.default_args)
        src2 = analog.fastnoise_source_f(
            type=analog.GR_LAPLACIAN, **self.default_args)
        self.assertTrue(
            numpy.array_equal(
                numpy.array(
                    src.samples()), numpy.array(
                    src2.samples())))


if __name__ == '__main__':
    gr_unittest.run(test_fastnoise_source)