1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
|
#!/usr/bin/env python
#
# Copyright 2007,2010,2012 Free Software Foundation, Inc.
#
# This file is part of GNU Radio
#
# GNU Radio is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 3, or (at your option)
# any later version.
#
# GNU Radio is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with GNU Radio; see the file COPYING. If not, write to
# the Free Software Foundation, Inc., 51 Franklin Street,
# Boston, MA 02110-1301, USA.
#
from gnuradio import gr, gr_unittest, analog, blocks
import numpy
class test_fastnoise_source(gr_unittest.TestCase):
def setUp (self):
self.num = 2**22
self.num_items = 10**6
self.default_args = {"samples": self.num, "seed": 43, "ampl": 1}
def tearDown (self):
pass
def run_test_real(self, form):
""" Run test case with float input/output
"""
tb = gr.top_block()
src = analog.fastnoise_source_f(type=form, **self.default_args)
head = blocks.head(nitems=self.num_items, sizeof_stream_item=gr.sizeof_float)
sink = blocks.vector_sink_f()
tb.connect(src, head, sink)
tb.run()
return numpy.array(sink.data())
def run_test_complex(self, form):
""" Run test case with complex input/output
"""
tb = gr.top_block()
src = analog.fastnoise_source_c(type=form, **self.default_args)
head = blocks.head(nitems=self.num_items, sizeof_stream_item=gr.sizeof_gr_complex)
sink = blocks.vector_sink_c()
tb.connect(src, head, sink)
tb.run()
return numpy.array(sink.data())
def test_001_real_uniform_moments(self):
data = self.run_test_real(analog.GR_UNIFORM)
self.assertAlmostEqual(min(data), -1, places=4)
self.assertAlmostEqual(max(data), 1, places=4)
# mean, variance
self.assertAlmostEqual(data.mean(), 0, places=2)
self.assertAlmostEqual(data.var(), (1-(-1))**2./12, places=3)
def test_001_real_gaussian_moments(self):
data = self.run_test_real(analog.GR_GAUSSIAN)
# mean, variance
self.assertAlmostEqual(data.mean(), 0, places=2)
self.assertAlmostEqual(data.var(), 1, places=2)
def test_001_real_laplacian_moments(self):
data = self.run_test_real(analog.GR_LAPLACIAN)
# mean, variance
self.assertAlmostEqual(data.mean(), 0, places=2)
self.assertAlmostEqual(data.var(), 2, places=2)
def test_001_complex_uniform_moments(self):
data = self.run_test_complex(analog.GR_UNIFORM)
# mean, variance
self.assertAlmostEqual(data.real.mean(), 0, places=2)
self.assertAlmostEqual(data.real.var(), 0.5*(1-(-1))**2./12, places=3)
self.assertAlmostEqual(data.imag.mean(), 0, places=2)
self.assertAlmostEqual(data.imag.var(), 0.5*(1-(-1))**2./12, places=3)
def test_001_complex_gaussian_moments(self):
data = self.run_test_complex(analog.GR_GAUSSIAN)
# mean, variance
self.assertAlmostEqual(data.real.mean(), 0, places=2)
self.assertAlmostEqual(data.real.var(), 0.5, places=2)
self.assertAlmostEqual(data.imag.mean(), 0, places=2)
self.assertAlmostEqual(data.imag.var(), 0.5, places=2)
def test_002_real_uniform_reproducibility(self):
data1 = self.run_test_real(analog.GR_UNIFORM)
data2 = self.run_test_real(analog.GR_UNIFORM)
# It's pseudoramdo thus must be equal
self.assertTrue(numpy.array_equal(data1, data2))
def test_002_real_gaussian_reproducibility(self):
data1 = self.run_test_real(analog.GR_GAUSSIAN)
data2 = self.run_test_real(analog.GR_GAUSSIAN)
self.assertTrue(numpy.array_equal(data1, data2))
def test_003_real_uniform_pool(self):
src = analog.fastnoise_source_f(type=analog.GR_UNIFORM, **self.default_args)
src2 = analog.fastnoise_source_f(type=analog.GR_UNIFORM, **self.default_args)
self.assertTrue(numpy.array_equal(numpy.array(src.samples()), numpy.array(src2.samples())))
def test_003_real_gaussian_pool(self):
src = analog.fastnoise_source_f(type=analog.GR_GAUSSIAN, **self.default_args)
src2 = analog.fastnoise_source_f(type=analog.GR_GAUSSIAN, **self.default_args)
self.assertTrue(numpy.array_equal(numpy.array(src.samples()), numpy.array(src2.samples())))
def test_003_cmplx_gaussian_pool(self):
src = analog.fastnoise_source_c(type=analog.GR_GAUSSIAN, **self.default_args)
src2 = analog.fastnoise_source_c(type=analog.GR_GAUSSIAN, **self.default_args)
self.assertTrue(numpy.array_equal(numpy.array(src.samples()), numpy.array(src2.samples())))
def test_003_cmplx_uniform_pool(self):
src = analog.fastnoise_source_c(type=analog.GR_UNIFORM, **self.default_args)
src2 = analog.fastnoise_source_c(type=analog.GR_UNIFORM, **self.default_args)
self.assertTrue(numpy.array_equal(numpy.array(src.samples()), numpy.array(src2.samples())))
def test_003_real_laplacian_pool(self):
src = analog.fastnoise_source_f(type=analog.GR_LAPLACIAN, **self.default_args)
src2 = analog.fastnoise_source_f(type=analog.GR_LAPLACIAN, **self.default_args)
self.assertTrue(numpy.array_equal(numpy.array(src.samples()), numpy.array(src2.samples())))
if __name__ == '__main__':
gr_unittest.run(test_fastnoise_source, "test_fastnoise_source.xml")
|