1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
|
#!/usr/bin/env python
#
# Copyright 2007,2010,2012 Free Software Foundation, Inc.
#
# This file is part of GNU Radio
#
# GNU Radio is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 3, or (at your option)
# any later version.
#
# GNU Radio is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with GNU Radio; see the file COPYING. If not, write to
# the Free Software Foundation, Inc., 51 Franklin Street,
# Boston, MA 02110-1301, USA.
#
from gnuradio import gr, gr_unittest, analog, blocks
import numpy
class test_fastnoise_source(gr_unittest.TestCase):
def setUp (self):
self.tb = gr.top_block ()
def tearDown (self):
self.tb = None
def test_001_test_moments(self):
tb = self.tb
NUM = 2**22
NUM_ITEMS = 10**6
DEFAULTARGS = {"samples": NUM, "seed": 43, "ampl": 1}
self.uni_real_src = analog.fastnoise_source_f(type = analog.GR_UNIFORM, **DEFAULTARGS)
self.uni_cplx_src = analog.fastnoise_source_c(type = analog.GR_UNIFORM, **DEFAULTARGS)
self.norm_real_src = analog.fastnoise_source_f(type = analog.GR_GAUSSIAN, **DEFAULTARGS)
self.norm_cplx_src = analog.fastnoise_source_c(type = analog.GR_GAUSSIAN, **DEFAULTARGS)
self.lapl_real_src = analog.fastnoise_source_f(type = analog.GR_LAPLACIAN, **DEFAULTARGS)
types = {
self.uni_real_src: "uniform", self.uni_cplx_src: "uniform",
self.norm_cplx_src: "norm", self.norm_cplx_src: "norm",
self.lapl_real_src: "laplace"
}
real_srcs = [self.uni_real_src, self.norm_real_src, self.lapl_real_src]
cplx_srcs = [self.uni_cplx_src, self.norm_cplx_src]
paths = {}
for src in real_srcs:
head = blocks.head(nitems=NUM_ITEMS, sizeof_stream_item=gr.sizeof_float)
sink = blocks.vector_sink_f()
paths[src] = (src, head, sink)
for src in cplx_srcs:
head = blocks.head(nitems=NUM_ITEMS, sizeof_stream_item=gr.sizeof_gr_complex)
sink = blocks.vector_sink_c()
paths[src] = (src, head, sink)
for path in paths.itervalues():
tb.connect(*path)
tb.run()
self.data = {src: path[2].data() for src, path in paths.iteritems()}
data = self.data
# min, max
self.assertAlmostEqual(min(data[self.uni_real_src]), -1, places=4)
self.assertAlmostEqual(max(data[self.uni_real_src]), 1, places=4)
# mean, variance
data = numpy.array(data[self.uni_real_src])
self.assertAlmostEqual(data.mean(), 0, places = 2)
self.assertAlmostEqual(data.var(), (1-(-1))**2./12, places = 3)
data = numpy.array(self.data[self.norm_real_src])
self.assertAlmostEqual(data.mean(), 0, places=2)
self.assertAlmostEqual(data.var(), 1, places=2)
data = numpy.array(self.data[self.lapl_real_src])
self.assertAlmostEqual(data.mean(), 0, places=2)
self.assertAlmostEqual(data.var(), 2, places=2)
if __name__ == '__main__':
gr_unittest.run(test_fastnoise_source, "test_fastnoise_source.xml")
|