1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
|
#
# Copyright 2005,2007,2012 Free Software Foundation, Inc.
#
# This file is part of GNU Radio
#
# SPDX-License-Identifier: GPL-3.0-or-later
#
#
from gnuradio import gr, filter
import math
import cmath
class fm_deemph(gr.hier_block2):
r"""
FM Deemphasis IIR filter
Args:
fs: sampling frequency in Hz (float)
tau: Time constant in seconds (75us in US, 50us in EUR) (float)
An analog deemphasis filter:
R
o------/\/\/\/---+----o
|
= C
|
---
Has this transfer function:
1 1
---- ---
RC tau
H(s) = ---------- = ----------
1 1
s + ---- s + ---
RC tau
And has its -3 dB response, due to the pole, at
|H(j w_c)|^2 = 1/2 => s = j w_c = j (1/(RC))
Historically, this corner frequency of analog audio deemphasis filters
been specified by the RC time constant used, called tau.
So w_c = 1/tau.
FWIW, for standard tau values, some standard analog components would be:
tau = 75 us = (50K)(1.5 nF) = (50 ohms)(1.5 uF)
tau = 50 us = (50K)(1.0 nF) = (50 ohms)(1.0 uF)
In specifying tau for this digital deemphasis filter, tau specifies
the *digital* corner frequency, w_c, desired.
The digital deemphasis filter design below, uses the
"bilinear transformation" method of designing digital filters:
1. Convert digital specifications into the analog domain, by prewarping
digital frequency specifications into analog frequencies.
w_a = (2/T)tan(wT/2)
2. Use an analog filter design technique to design the filter.
3. Use the bilinear transformation to convert the analog filter design to a
digital filter design.
H(z) = H(s)|
s = (2/T)(1-z^-1)/(1+z^-1)
w_ca 1 1 - (-1) z^-1
H(z) = ---- * ----------- * -----------------------
2 fs -w_ca -w_ca
1 - ----- 1 + -----
2 fs 2 fs
1 - ----------- z^-1
-w_ca
1 - -----
2 fs
We use this design technique, because it is an easy way to obtain a filter
design with the -6 dB/octave roll-off required of the deemphasis filter.
Jackson, Leland B., _Digital_Filters_and_Signal_Processing_Second_Edition_,
Kluwer Academic Publishers, 1989, pp 201-212
Orfanidis, Sophocles J., _Introduction_to_Signal_Processing_, Prentice Hall,
1996, pp 573-583
"""
def __init__(self, fs, tau=75e-6):
gr.hier_block2.__init__(self, "fm_deemph",
# Input signature
gr.io_signature(1, 1, gr.sizeof_float),
gr.io_signature(1, 1, gr.sizeof_float)) # Output signature
# Digital corner frequency
w_c = 1.0 / tau
# Prewarped analog corner frequency
w_ca = 2.0 * fs * math.tan(w_c / (2.0 * fs))
# Resulting digital pole, zero, and gain term from the bilinear
# transformation of H(s) = w_ca / (s + w_ca) to
# H(z) = b0 (1 - z1 z^-1)/(1 - p1 z^-1)
k = -w_ca / (2.0 * fs)
z1 = -1.0
p1 = (1.0 + k) / (1.0 - k)
b0 = -k / (1.0 - k)
btaps = [b0 * 1.0, b0 * -z1]
ataps = [1.0, -p1]
# Since H(s = 0) = 1.0, then H(z = 1) = 1.0 and has 0 dB gain at DC
deemph = filter.iir_filter_ffd(btaps, ataps, False)
self.connect(self, deemph, self)
class fm_preemph(gr.hier_block2):
r"""
FM Preemphasis IIR filter.
Args:
fs: sampling frequency in Hz (float)
tau: Time constant in seconds (75us in US, 50us in EUR) (float)
fh: High frequency at which to flatten out (< 0 means default of 0.925*fs/2.0) (float)
An analog preemphasis filter, that flattens out again at the high end:
C
+-----||------+
| |
o------+ +-----+--------o
| R1 | |
+----/\/\/\/--+ \
/
\ R2
/
\
|
o--------------------------+--------o
(This fine ASCII rendition is based on Figure 5-15
in "Digital and Analog Communication Systems", Leon W. Couch II)
Has this transfer function:
1
s + ---
R1C
H(s) = ------------------
1 R1
s + --- (1 + --)
R1C R2
It has a corner due to the numerator, where the rise starts, at
|Hn(j w_cl)|^2 = 2*|Hn(0)|^2 => s = j w_cl = j (1/(R1C))
It has a corner due to the denominator, where it levels off again, at
|Hn(j w_ch)|^2 = 1/2*|Hd(0)|^2 => s = j w_ch = j (1/(R1C) * (1 + R1/R2))
Historically, the corner frequency of analog audio preemphasis filters
been specified by the R1C time constant used, called tau.
So
w_cl = 1/tau = 1/R1C; f_cl = 1/(2*pi*tau) = 1/(2*pi*R1*C)
w_ch = 1/tau2 = (1+R1/R2)/R1C; f_ch = 1/(2*pi*tau2) = (1+R1/R2)/(2*pi*R1*C)
and note f_ch = f_cl * (1 + R1/R2).
For broadcast FM audio, tau is 75us in the United States and 50us in Europe.
f_ch should be higher than our digital audio bandwidth.
The Bode plot looks like this:
/----------------
/
/ <-- slope = 20dB/decade
/
-------------/
f_cl f_ch
In specifying tau for this digital preemphasis filter, tau specifies
the *digital* corner frequency, w_cl, desired.
The digital preemphasis filter design below, uses the
"bilinear transformation" method of designing digital filters:
1. Convert digital specifications into the analog domain, by prewarping
digital frequency specifications into analog frequencies.
w_a = (2/T)tan(wT/2)
2. Use an analog filter design technique to design the filter.
3. Use the bilinear transformation to convert the analog filter design to a
digital filter design.
H(z) = H(s)|
s = (2/T)(1-z^-1)/(1+z^-1)
-w_cla
1 + ------
2 fs
1 - ------------ z^-1
-w_cla -w_cla
1 - ------ 1 - ------
2 fs 2 fs
H(z) = ------------ * -----------------------
-w_cha -w_cha
1 - ------ 1 + ------
2 fs 2 fs
1 - ------------ z^-1
-w_cha
1 - ------
2 fs
We use this design technique, because it is an easy way to obtain a filter
design with the 6 dB/octave rise required of the premphasis filter.
Jackson, Leland B., _Digital_Filters_and_Signal_Processing_Second_Edition_,
Kluwer Academic Publishers, 1989, pp 201-212
Orfanidis, Sophocles J., _Introduction_to_Signal_Processing_, Prentice Hall,
1996, pp 573-583
"""
def __init__(self, fs, tau=75e-6, fh=-1.0):
gr.hier_block2.__init__(self, "fm_preemph",
# Input signature
gr.io_signature(1, 1, gr.sizeof_float),
gr.io_signature(1, 1, gr.sizeof_float)) # Output signature
# Set fh to something sensible, if needed.
# N.B. fh == fs/2.0 or fh == 0.0 results in a pole on the unit circle
# at z = -1.0 or z = 1.0 respectively. That makes the filter unstable
# and useless.
if fh <= 0.0 or fh >= fs / 2.0:
fh = 0.925 * fs / 2.0
# Digital corner frequencies
w_cl = 1.0 / tau
w_ch = 2.0 * math.pi * fh
# Prewarped analog corner frequencies
w_cla = 2.0 * fs * math.tan(w_cl / (2.0 * fs))
w_cha = 2.0 * fs * math.tan(w_ch / (2.0 * fs))
# Resulting digital pole, zero, and gain term from the bilinear
# transformation of H(s) = (s + w_cla) / (s + w_cha) to
# H(z) = b0 (1 - z1 z^-1)/(1 - p1 z^-1)
kl = -w_cla / (2.0 * fs)
kh = -w_cha / (2.0 * fs)
z1 = (1.0 + kl) / (1.0 - kl)
p1 = (1.0 + kh) / (1.0 - kh)
b0 = (1.0 - kl) / (1.0 - kh)
# Since H(s = infinity) = 1.0, then H(z = -1) = 1.0 and
# this filter has 0 dB gain at fs/2.0.
# That isn't what users are going to expect, so adjust with a
# gain, g, so that H(z = 1) = 1.0 for 0 dB gain at DC.
w_0dB = 2.0 * math.pi * 0.0
g = abs(1.0 - p1 * cmath.rect(1.0, -w_0dB)) \
/ (b0 * abs(1.0 - z1 * cmath.rect(1.0, -w_0dB)))
btaps = [g * b0 * 1.0, g * b0 * -z1]
ataps = [1.0, -p1]
preemph = filter.iir_filter_ffd(btaps, ataps, False)
self.connect(self, preemph, self)
|