1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
|
/* -*- c++ -*- */
/*
* Copyright 2006,2010,2012 Free Software Foundation, Inc.
*
* This file is part of GNU Radio
*
* GNU Radio is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3, or (at your option)
* any later version.
*
* GNU Radio is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNU Radio; see the file COPYING. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street,
* Boston, MA 02110-1301, USA.
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include <vector>
#include "agc3_cc_impl.h"
#include <gnuradio/io_signature.h>
#include <volk/volk.h>
namespace gr {
namespace analog {
agc3_cc::sptr
agc3_cc::make(float attack_rate, float decay_rate,
float reference, float gain)
{
return gnuradio::get_initial_sptr
(new agc3_cc_impl(attack_rate, decay_rate,
reference, gain));
}
agc3_cc_impl::agc3_cc_impl(float attack_rate, float decay_rate,
float reference, float gain)
: sync_block("agc3_cc",
io_signature::make(1, 1, sizeof(gr_complex)),
io_signature::make(1, 1, sizeof(gr_complex))),
d_attack(attack_rate), d_decay(decay_rate),
d_reference(reference), d_gain(gain), d_max_gain(65536),
d_reset(true)
{
const int alignment_multiple =
volk_get_alignment() / sizeof(gr_complex);
set_alignment(std::max(1, alignment_multiple));
}
agc3_cc_impl::~agc3_cc_impl()
{
}
int
agc3_cc_impl::work(int noutput_items,
gr_vector_const_void_star &input_items,
gr_vector_void_star &output_items)
{
const gr_complex *in = (const gr_complex*)input_items[0];
gr_complex *out = (gr_complex*)output_items[0];
// Compute magnitude of each sample
#ifdef __GNUC__
float mags[noutput_items] __attribute__ ((aligned (16)));
volk_32fc_magnitude_32f(mags, &in[0], noutput_items);
// Compute a linear average on reset (no expected)
if(__builtin_expect(d_reset, false)) {
#else
std::vector<float> mags(noutput_items);
volk_32fc_magnitude_32f(&mags[0], &in[0], noutput_items);
// Compute a linear average on reset (no expected)
if(!d_reset) {
#endif
float mag(0.0);
for(int i=0; i<noutput_items; i++) {
mag += mags[i];
}
d_gain = d_reference * (noutput_items/mag);
if(d_gain < 0.0)
d_gain = 10e-5;
if(d_max_gain > 0.0 && d_gain > d_max_gain) {
d_gain = d_max_gain;
}
// scale output values
for(int i=0; i<noutput_items; i++){
out[i] = in[i] * d_gain;
}
d_reset = false;
}
else {
// Otherwise perform a normal iir update
for(int i=0; i<noutput_items; i++) {
float newlevel = mags[i]; // abs(in[i]);
float rate = (newlevel > d_reference/d_gain)?d_attack:d_decay;
d_gain = newlevel==0?(d_gain*(1-rate)):(d_gain*(1-rate)) + (d_reference/newlevel)*rate;
out[i] = in[i] * d_gain;
}
}
return noutput_items;
}
} /* namespace analog */
} /* namespace gr */
|