1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
|
/* -*- c++ -*- */
/*
* Copyright 2006,2010,2012,2013 Free Software Foundation, Inc.
*
* This file is part of GNU Radio
*
* SPDX-License-Identifier: GPL-3.0-or-later
*
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include <cfloat>
#include <vector>
#include "agc3_cc_impl.h"
#include <gnuradio/io_signature.h>
#include <volk/volk.h>
namespace gr {
namespace analog {
agc3_cc::sptr agc3_cc::make(float attack_rate,
float decay_rate,
float reference,
float gain,
int iir_update_decim)
{
return gnuradio::make_block_sptr<agc3_cc_impl>(
attack_rate, decay_rate, reference, gain, iir_update_decim);
}
agc3_cc_impl::agc3_cc_impl(float attack_rate,
float decay_rate,
float reference,
float gain,
int iir_update_decim)
: sync_block("agc3_cc",
io_signature::make(1, 1, sizeof(gr_complex)),
io_signature::make(1, 1, sizeof(gr_complex))),
d_attack(attack_rate),
d_decay(decay_rate),
d_reference(reference),
d_gain(gain),
d_max_gain(65536),
d_reset(true),
d_iir_update_decim(iir_update_decim)
{
set_output_multiple(iir_update_decim * 4);
const int alignment_multiple = volk_get_alignment() / sizeof(gr_complex);
set_alignment(std::max(1, alignment_multiple));
}
agc3_cc_impl::~agc3_cc_impl() {}
int agc3_cc_impl::work(int noutput_items,
gr_vector_const_void_star& input_items,
gr_vector_void_star& output_items)
{
const gr_complex* in = (const gr_complex*)input_items[0];
gr_complex* out = (gr_complex*)output_items[0];
#ifdef __GNUC__
// Compute a linear average on reset (no expected)
if (__builtin_expect(d_reset, false)) {
float mags[noutput_items] __attribute__((aligned(16)));
volk_32fc_magnitude_32f(mags, &in[0], noutput_items);
#else
// Compute a linear average on reset (no expected)
if (!d_reset) {
_declspec(align(16)) std::vector<float> mags(noutput_items);
volk_32fc_magnitude_32f(&mags[0], &in[0], noutput_items);
#endif
float mag(0.0);
for (int i = 0; i < noutput_items; i++) {
mag += mags[i];
}
d_gain = d_reference * (noutput_items / mag);
if (d_gain < 0.0)
d_gain = 10e-5;
if (d_max_gain > 0.0 && d_gain > d_max_gain) {
d_gain = d_max_gain;
}
// scale output values
for (int i = 0; i < noutput_items; i++) {
out[i] = in[i] * d_gain;
}
d_reset = false;
} else {
// Otherwise perform a normal iir update
#ifdef _MSC_VER
__declspec(align(16)) std::vector<float> mag_sq(noutput_items /
d_iir_update_decim);
__declspec(align(16)) std::vector<float> inv_mag(noutput_items /
d_iir_update_decim);
#else
float mag_sq[noutput_items / d_iir_update_decim] __attribute__((aligned(16)));
float inv_mag[noutput_items / d_iir_update_decim] __attribute__((aligned(16)));
#endif
// generate squared magnitudes at decimated rate (gather operation)
for (int i = 0; i < noutput_items / d_iir_update_decim; i++) {
int idx = i * d_iir_update_decim;
mag_sq[i] = in[idx].real() * in[idx].real() + in[idx].imag() * in[idx].imag();
}
// compute inverse square roots
volk_32f_invsqrt_32f(&inv_mag[0], &mag_sq[0], noutput_items / d_iir_update_decim);
// apply updates
for (int i = 0; i < noutput_items / d_iir_update_decim; i++) {
float magi = inv_mag[i];
#if defined(_MSC_VER) && _MSC_VER < 1900
if (!_finite(magi)) {
#else
if (std::isfinite(magi)) {
#endif
float rate = (magi > d_gain / d_reference) ? d_decay : d_attack;
d_gain = d_gain * (1 - rate) + d_reference * magi * rate;
} else {
d_gain = d_gain * (1 - d_decay);
}
for (int j = i * d_iir_update_decim; j < (i + 1) * d_iir_update_decim; j++) {
out[j] = in[j] * d_gain;
}
}
}
return noutput_items;
}
} /* namespace analog */
} /* namespace gr */
|