1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
|
# Copyright 2012,2013 Free Software Foundation, Inc.
#
# This file is part of GNU Radio
#
# SPDX-License-Identifier: GPL-3.0-or-later
#
from . import pmt_python as pmt
import numpy
# SWIG isn't taking in the #define PMT_NIL;
# getting the singleton locally.
PMT_NIL = pmt.get_PMT_NIL()
# define missing
def pmt_to_tuple(p):
elems = list()
for i in range(pmt.length(p)):
elem = pmt.tuple_ref(p, i)
elems.append(pmt_to_python(elem))
return tuple(elems)
def pmt_from_tuple(p):
args = list(map(python_to_pmt, p))
return pmt.make_tuple(*args)
def pmt_to_vector(p):
v = list()
for i in range(pmt.length(p)):
elem = pmt.vector_ref(p, i)
v.append(pmt_to_python(elem))
return v
def pmt_from_vector(p):
v = pmt.make_vector(len(p), PMT_NIL)
for i, elem in enumerate(p):
pmt.vector_set(v, i, python_to_pmt(elem))
return v
def pmt_to_dict(p):
d = dict()
items = pmt.dict_items(p)
for i in range(pmt.length(items)):
pair = pmt.nth(i, items)
k = pmt.car(pair)
v = pmt.cdr(pair)
d[pmt_to_python(k)] = pmt_to_python(v)
return d
def pmt_from_dict(p):
d = pmt.make_dict()
for k, v in list(p.items()):
# dict is immutable -> therefore pmt_dict_add returns the new dict
d = pmt.dict_add(d, python_to_pmt(k), python_to_pmt(v))
return d
numpy_mappings = {
numpy.dtype(numpy.float32): (pmt.init_f32vector, float, pmt.f32vector_elements, pmt.is_f32vector),
numpy.dtype(numpy.float64): (pmt.init_f64vector, float, pmt.f64vector_elements, pmt.is_f64vector),
numpy.dtype(numpy.complex64): (pmt.init_c32vector, complex, pmt.c32vector_elements, pmt.is_c32vector),
numpy.dtype(numpy.complex128): (pmt.init_c64vector, complex, pmt.c64vector_elements, pmt.is_c64vector),
numpy.dtype(numpy.int8): (pmt.init_s8vector, int, pmt.s8vector_elements, pmt.is_s8vector),
numpy.dtype(numpy.int16): (pmt.init_s16vector, int, pmt.s16vector_elements, pmt.is_s16vector),
numpy.dtype(numpy.int32): (pmt.init_s32vector, int, pmt.s32vector_elements, pmt.is_s32vector),
# numpy.dtype(numpy.int64): (pmt.init_s64vector, int, pmt.s64vector_elements, pmt.is_s64vector),
numpy.dtype(numpy.uint8): (pmt.init_u8vector, int, pmt.u8vector_elements, pmt.is_u8vector),
numpy.dtype(numpy.uint16): (pmt.init_u16vector, int, pmt.u16vector_elements, pmt.is_u16vector),
numpy.dtype(numpy.uint32): (pmt.init_u32vector, int, pmt.u32vector_elements, pmt.is_u32vector),
# numpy.dtype(numpy.uint64): (pmt.init_u64vector, int, pmt.u64vector_elements, pmt.is_u64vector),
numpy.dtype(numpy.byte): (pmt.init_u8vector, int, pmt.u8vector_elements, pmt.is_u8vector),
}
uvector_mappings = dict(
[(numpy_mappings[key][3], (numpy_mappings[key][2], key)) for key in numpy_mappings])
def numpy_to_uvector(numpy_array):
try:
mapping = numpy_mappings[numpy_array.dtype]
pc = list(map(mapping[1], numpy.ravel(numpy_array)))
return mapping[0](numpy_array.size, pc)
except KeyError:
raise ValueError(
"unsupported numpy array dtype for conversion to pmt %s" % (numpy_array.dtype))
def uvector_to_numpy(uvector):
match = None
for test_func in list(uvector_mappings.keys()):
if test_func(uvector):
match = uvector_mappings[test_func]
return numpy.array(match[0](uvector), dtype=match[1])
else:
raise ValueError(
"unsupported uvector data type for conversion to numpy array %s" % (uvector))
type_mappings = ( # python type, check pmt type, to python, from python
(None, pmt.is_null, lambda x: None, lambda x: PMT_NIL),
(bool, pmt.is_bool, pmt.to_bool, pmt.from_bool),
(str, pmt.is_symbol, pmt.symbol_to_string, pmt.string_to_symbol),
(str, lambda x: False, None, lambda x: pmt.string_to_symbol(x.encode('utf-8'))),
(int, pmt.is_integer, pmt.to_long, pmt.from_long),
(int, pmt.is_uint64, lambda x: int(pmt.to_uint64(x)), pmt.from_uint64),
(float, pmt.is_real, pmt.to_double, pmt.from_double),
(complex, pmt.is_complex, pmt.to_complex, pmt.from_complex),
(tuple, pmt.is_tuple, pmt_to_tuple, pmt_from_tuple),
(list, pmt.is_vector, pmt_to_vector, pmt_from_vector),
(dict, pmt.is_dict, pmt_to_dict, pmt_from_dict),
(tuple, pmt.is_pair, lambda x: (pmt_to_python(pmt.car(x)), pmt_to_python(
pmt.cdr(x))), lambda x: pmt.cons(python_to_pmt(x[0]), python_to_pmt(x[1]))),
(numpy.ndarray, pmt.is_uniform_vector, uvector_to_numpy, numpy_to_uvector),
)
def pmt_to_python(p):
for python_type, pmt_check, to_python, from_python in type_mappings:
if pmt_check(p):
try:
return to_python(p)
# TODO: make pybind11 handle wrong_type, convert to type error
except (RuntimeError, TypeError, ValueError):
# This exception will be handled by the general failure case
pass
raise ValueError("can't convert %s type to pmt (%s)" % (type(p), p))
def python_to_pmt(p):
for python_type, pmt_check, to_python, from_python in type_mappings:
if python_type is None:
if p is None:
return from_python(p)
elif isinstance(p, python_type):
return from_python(p)
raise ValueError("can't convert %s type to pmt (%s)" % (type(p), p))
|