summaryrefslogtreecommitdiff
path: root/gnuradio-runtime/python/gnuradio/gr/qa_random.py
blob: c0d9a7f34c1ec0f83146e41dd515392c635d4a4c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
#!/usr/bin/env python
#
# Copyright 2006,2007,2010 Free Software Foundation, Inc.
#
# This file is part of GNU Radio
#
# GNU Radio is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 3, or (at your option)
# any later version.
#
# GNU Radio is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with GNU Radio; see the file COPYING.  If not, write to
# the Free Software Foundation, Inc., 51 Franklin Street,
# Boston, MA 02110-1301, USA.
#

from gnuradio import gr, gr_unittest
import numpy as np
from scipy.stats import norm, laplace, rayleigh
#from time import sleep

class test_random(gr_unittest.TestCase):

    num_tests = 10000

    # Disclaimer
    def test_0(self):
        print 'NOTE: Following tests are not statistically significant!'
        print 'Realisations per test:',self.num_tests
        self.assertEqual(1,1)

    # Check for range [0,1) of uniform distributed random numbers and print minimal and maximal value
    def test_1(self):
        print '# TEST 1'
        print 'Uniform distributed numbers: Range'
        values = np.zeros(self.num_tests)
        rndm = gr.random()
        for k in range(self.num_tests):
            values[k] = rndm.ran1()
        for value in values:
            self.assertLess(value, 1)
            self.assertGreaterEqual(value, 0)
        print 'Uniform random numbers (num/min/max):', self.num_tests, min(values), max(values)

    # Check uniformly distributed random numbers on uniformity (without assert, only printing)
    def test_2(self):
        print '# TEST 2'
        print 'Uniform random numbers: Distribution'
        num_bins = 11
        values = np.zeros(self.num_tests)
        rndm = gr.random()
        for k in range(self.num_tests):
            values[k] = rndm.ran1()
        bins = np.linspace(0,1,num_bins) # These are the bin edges!
        hist = np.histogram(values,bins)
        print 'Lower edge bin / upper edge bin / count / expected'
        for k in range(len(hist[0])):
                print hist[1][k], hist[1][k+1], hist[0][k], float(self.num_tests)/(num_bins-1)

    # Check distribution of normally (gaussian, mean=0, variance=1) distributed random numbers (no assert)
    def test_3(self):
        print '# TEST 3'
        print 'Normal random numbers: Distribution'
        num_bins = 11
        hist_range = [-5,5]
        values = np.zeros(self.num_tests)
        rndm = gr.random()
        for k in range(self.num_tests):
            values[k] = rndm.gasdev()
        bins = np.linspace(hist_range[0],hist_range[1],num_bins)
        hist = np.histogram(values,bins)
        print 'Lower edge bin / upper edge bin / count / expected'
        for k in range(len(hist[0])):
            print hist[1][k], hist[1][k+1], hist[0][k], float(norm.cdf(hist[1][k+1])-norm.cdf(hist[1][k]))*self.num_tests

    # Check distribution of laplacian (mean=0, variance=1) distributed random numbers (no assert)
    def test_4(self):
        print '# TEST 4'
        print 'Laplacian random numbers: Distribution'
        num_bins = 11
        hist_range = [-5,5]
        values = np.zeros(self.num_tests)
        rndm = gr.random()
        for k in range(self.num_tests):
            values[k] = rndm.laplacian()
        bins = np.linspace(hist_range[0],hist_range[1],num_bins)
        hist = np.histogram(values,bins)
        print 'Lower edge bin / upper edge bin / count / expected'
        for k in range(len(hist[0])):
            print hist[1][k], hist[1][k+1], hist[0][k], float(laplace.cdf(hist[1][k+1])-laplace.cdf(hist[1][k]))*self.num_tests

    # Check distribution of laplacian (mean=0, variance=1) distributed random numbers (no assert)
    def test_5(self):
        print '# TEST 5'
        print 'Rayleigh random numbers: Distribution'
        num_bins = 11
        hist_range = [0,10]
        values = np.zeros(self.num_tests)
        rndm = gr.random()
        for k in range(self.num_tests):
            values[k] = rndm.rayleigh()
        bins = np.linspace(hist_range[0],hist_range[1],num_bins)
        hist = np.histogram(values,bins)
        print 'Lower edge bin / upper edge bin / count / expected'
        for k in range(len(hist[0])):
            print hist[1][k], hist[1][k+1], hist[0][k], float(rayleigh.cdf(hist[1][k+1])-rayleigh.cdf(hist[1][k]))*self.num_tests

    # Check seeds (init with time and seed as fix number)
    def test_6(self):
        print '# TEST 6'
        num = 5

        print 'Some random numbers in [0,1), should change every run:'
        rndm0 = gr.random(0); # init with time
        # NOTE: the sleep increases the executiont time massively, remove assert for convenience
        #sleep(1)
        #rndm1 = gr.random(0); # init with fix seed
        for k in range(num):
            x = rndm0.ran1();
            print x,
        #    y = rndm1.ran1();
        #    print x, '!=', y
        #    self.assertNotEqual(x,y)
        print ' '

        print 'Some random numbers in [0,1) (seed two instances), should be the same every run:'
        rndm0 = gr.random(42); # init with time
        rndm1 = gr.random(42); # init with fix seed
        for k in range(num):
            x = rndm0.ran1();
            y = rndm1.ran1();
            print x, '=', y
            self.assertEqual(x,y)

        print 'Some random numbers in [0,1) (reseed one instance), should be the same every run:'
        x = np.zeros(num)
        y = np.zeros(num)
        rndm0 = gr.random(42); # init with time
        for k in range(num):
            x[k] = rndm0.ran1();
        rndm1.reseed(43); # init with fix seed
        for k in range(num):
            y[k] = rndm0.ran1();
        for k in range(num):
            print x[k], '!=', y[k]
            self.assertNotEqual(x[k],y[k])

if __name__ == '__main__':
    gr_unittest.run(test_random, "test_random.xml")