summaryrefslogtreecommitdiff
path: root/gnuradio-runtime/include/gnuradio/nco.h
blob: 159956857dc8ac9a692ac5b1024836f96976ace1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
/* -*- c++ -*- */
/*
 * Copyright 2002,2013,2018 Free Software Foundation, Inc.
 *
 * This file is part of GNU Radio
 *
 * SPDX-License-Identifier: GPL-3.0-or-later
 *
 */

#ifndef _GR_NCO_H_
#define _GR_NCO_H_

#include <gnuradio/gr_complex.h>
#include <gnuradio/math.h>
#include <gnuradio/sincos.h>

#include <cmath>
#include <vector>

namespace gr {

/*!
 * \brief base class template for Numerically Controlled Oscillator (NCO)
 * \ingroup misc
 */
template <class o_type, class i_type>
class nco
{
public:
    nco() : phase(0), phase_inc(0) {}

    virtual ~nco() {}

    // radians
    void set_phase(double angle) { phase = angle; }

    void adjust_phase(double delta_phase) { phase += delta_phase; }

    // angle_rate is in radians / step
    void set_freq(double angle_rate) { phase_inc = angle_rate; }

    // angle_rate is a delta in radians / step
    void adjust_freq(double delta_angle_rate) { phase_inc += delta_angle_rate; }

    // increment current phase angle
    void step(int n = 1)
    {
        phase += phase_inc * n;
        if (fabs(phase) > GR_M_PI) {
            while (phase > GR_M_PI)
                phase -= 2 * GR_M_PI;

            while (phase < -GR_M_PI)
                phase += 2 * GR_M_PI;
        }
    }

    // units are radians / step
    double get_phase() const { return phase; }
    double get_freq() const { return phase_inc; }

    // compute sin and cos for current phase angle
    void sincos(float* sinx, float* cosx) const { gr::sincosf(phase, sinx, cosx); }

    // compute cos or sin for current phase angle
    float cos() const { return std::cos(phase); }
    float sin() const { return std::sin(phase); }

    // compute a block at a time
    void sin(float* output, int noutput_items, double ampl = 1.0);
    void cos(float* output, int noutput_items, double ampl = 1.0);
    void sincos(gr_complex* output, int noutput_items, double ampl = 1.0);
    void sin(short* output, int noutput_items, double ampl = 1.0);
    void cos(short* output, int noutput_items, double ampl = 1.0);
    void sin(int* output, int noutput_items, double ampl = 1.0);
    void cos(int* output, int noutput_items, double ampl = 1.0);

protected:
    double phase;
    double phase_inc;
};

template <class o_type, class i_type>
void nco<o_type, i_type>::sin(float* output, int noutput_items, double ampl)
{
    for (int i = 0; i < noutput_items; i++) {
        output[i] = (float)(sin() * ampl);
        step();
    }
}

template <class o_type, class i_type>
void nco<o_type, i_type>::cos(float* output, int noutput_items, double ampl)
{
    for (int i = 0; i < noutput_items; i++) {
        output[i] = (float)(cos() * ampl);
        step();
    }
}

template <class o_type, class i_type>
void nco<o_type, i_type>::sin(short* output, int noutput_items, double ampl)
{
    for (int i = 0; i < noutput_items; i++) {
        output[i] = (short)(sin() * ampl);
        step();
    }
}

template <class o_type, class i_type>
void nco<o_type, i_type>::cos(short* output, int noutput_items, double ampl)
{
    for (int i = 0; i < noutput_items; i++) {
        output[i] = (short)(cos() * ampl);
        step();
    }
}

template <class o_type, class i_type>
void nco<o_type, i_type>::sin(int* output, int noutput_items, double ampl)
{
    for (int i = 0; i < noutput_items; i++) {
        output[i] = (int)(sin() * ampl);
        step();
    }
}

template <class o_type, class i_type>
void nco<o_type, i_type>::cos(int* output, int noutput_items, double ampl)
{
    for (int i = 0; i < noutput_items; i++) {
        output[i] = (int)(cos() * ampl);
        step();
    }
}

template <class o_type, class i_type>
void nco<o_type, i_type>::sincos(gr_complex* output, int noutput_items, double ampl)
{
    for (int i = 0; i < noutput_items; i++) {
        float cosx, sinx;
        nco::sincos(&sinx, &cosx);
        output[i] = gr_complex(cosx * ampl, sinx * ampl);
        step();
    }
}

} /* namespace gr */

#endif /* _NCO_H_ */