summaryrefslogtreecommitdiff
path: root/gnuradio-runtime/apps/evaluation_random_numbers.py
blob: 0d00554c3dd0867baaffa850afb846b6eea5d985 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
#!/usr/bin/env python
#
# Copyright 2015 Free Software Foundation, Inc.
#
# This file is part of GNU Radio
#
# SPDX-License-Identifier: GPL-3.0-or-later
#
#

from gnuradio import gr
import numpy as np
from scipy.stats import norm, laplace, rayleigh
from matplotlib import pyplot as plt

# NOTE: scipy and matplotlib are optional packages and not included in the default gnuradio dependencies

#*** SETUP ***#

# Number of realisations per histogram
num_tests = 1000000

# Set number of bins in histograms
uniform_num_bins = 31
gauss_num_bins = 31
rayleigh_num_bins = 31
laplace_num_bins = 31

rndm = gr.random()  # instance of gnuradio random class (gr::random)

print('All histograms contain', num_tests, 'realisations.')

#*** GENERATE DATA ***#

uniform_values = np.zeros(num_tests)
gauss_values = np.zeros(num_tests)
rayleigh_values = np.zeros(num_tests)
laplace_values = np.zeros(num_tests)

for k in range(num_tests):
    uniform_values[k] = rndm.ran1()
    gauss_values[k] = rndm.gasdev()
    rayleigh_values[k] = rndm.rayleigh()
    laplace_values[k] = rndm.laplacian()

#*** HISTOGRAM DATA AND CALCULATE EXPECTED COUNTS ***#

uniform_bins = np.linspace(0, 1, uniform_num_bins)
gauss_bins = np.linspace(-8, 8, gauss_num_bins)
laplace_bins = np.linspace(-8, 8, laplace_num_bins)
rayleigh_bins = np.linspace(0, 10, rayleigh_num_bins)

uniform_hist = np.histogram(uniform_values, uniform_bins)
gauss_hist = np.histogram(gauss_values, gauss_bins)
rayleigh_hist = np.histogram(rayleigh_values, rayleigh_bins)
laplace_hist = np.histogram(laplace_values, laplace_bins)

uniform_expected = np.zeros(uniform_num_bins - 1)
gauss_expected = np.zeros(gauss_num_bins - 1)
rayleigh_expected = np.zeros(rayleigh_num_bins - 1)
laplace_expected = np.zeros(laplace_num_bins - 1)

for k in range(len(uniform_hist[0])):
    uniform_expected[k] = num_tests / float(uniform_num_bins - 1)

for k in range(len(gauss_hist[0])):
    gauss_expected[k] = float(
        norm.cdf(gauss_hist[1][k + 1]) - norm.cdf(gauss_hist[1][k])) * num_tests

for k in range(len(rayleigh_hist[0])):
    rayleigh_expected[k] = float(rayleigh.cdf(
        rayleigh_hist[1][k + 1]) - rayleigh.cdf(rayleigh_hist[1][k])) * num_tests

for k in range(len(laplace_hist[0])):
    laplace_expected[k] = float(laplace.cdf(
        laplace_hist[1][k + 1]) - laplace.cdf(laplace_hist[1][k])) * num_tests

#*** PLOT HISTOGRAMS AND EXPECTATIONS TAKEN FROM SCIPY ***#

uniform_bins_center = uniform_bins[0:-1] + \
    (uniform_bins[1] - uniform_bins[0]) / 2.0
gauss_bins_center = gauss_bins[0:-1] + (gauss_bins[1] - gauss_bins[0]) / 2.0
rayleigh_bins_center = rayleigh_bins[0:-1] + \
    (rayleigh_bins[1] - rayleigh_bins[0]) / 2.0
laplace_bins_center = laplace_bins[0:-1] + \
    (laplace_bins[1] - laplace_bins[0]) / 2.0

plt.figure(1)

plt.subplot(2, 1, 1)
plt.plot(uniform_bins_center,
         uniform_hist[0], 's--', uniform_bins_center, uniform_expected, 'o:')
plt.xlabel('Bins'), plt.ylabel('Count'), plt.title('Uniform: Distribution')
plt.legend(['histogram gr::random', 'calculation scipy'], loc=1)

plt.subplot(2, 1, 2)
plt.plot(uniform_bins_center, uniform_hist[0] / uniform_expected, 'rs--')
plt.xlabel('Bins'), plt.ylabel('Relative deviation'), plt.title(
    'Uniform: Relative deviation to scipy')

plt.figure(2)

plt.subplot(2, 1, 1)
plt.plot(gauss_bins_center, gauss_hist[0], 's--',
         gauss_bins_center, gauss_expected, 'o:')
plt.xlabel('Bins'), plt.ylabel('Count'), plt.title('Gauss: Distribution')
plt.legend(['histogram gr::random', 'calculation scipy'], loc=1)

plt.subplot(2, 1, 2)
plt.plot(gauss_bins_center, gauss_hist[0] / gauss_expected, 'rs--')
plt.xlabel('Bins'), plt.ylabel('Relative deviation'), plt.title(
    'Gauss: Relative deviation to scipy')

plt.figure(3)

plt.subplot(2, 1, 1)
plt.plot(rayleigh_bins_center,
         rayleigh_hist[0], 's--', rayleigh_bins_center, rayleigh_expected, 'o:')
plt.xlabel('Bins'), plt.ylabel('Count'), plt.title('Rayleigh: Distribution')
plt.legend(['histogram gr::random', 'calculation scipy'], loc=1)


plt.subplot(2, 1, 2)
plt.plot(rayleigh_bins_center, rayleigh_hist[0] / rayleigh_expected, 'rs--')
plt.xlabel('Bins'), plt.ylabel('Relative deviation'), plt.title(
    'Rayleigh: Relative deviation to scipy')

plt.figure(4)

plt.subplot(2, 1, 1)
plt.plot(laplace_bins_center,
         laplace_hist[0], 's--', laplace_bins_center, laplace_expected, 'o:')
plt.xlabel('Bins'), plt.ylabel('Count'), plt.title('Laplace: Distribution')
plt.legend(['histogram gr::random', 'calculation scipy'], loc=1)

plt.subplot(2, 1, 2)
plt.plot(laplace_bins_center, laplace_hist[0] / laplace_expected, 'rs--')
plt.xlabel('Bins'), plt.ylabel('Relative deviation'), plt.title(
    'Laplace: Relative deviation to scipy')

plt.show()