1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
|
#
# Copyright 2005,2006 Free Software Foundation, Inc.
#
# This file is part of GNU Radio
#
# GNU Radio is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 3, or (at your option)
# any later version.
#
# GNU Radio is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with GNU Radio; see the file COPYING. If not, write to
# the Free Software Foundation, Inc., 51 Franklin Street,
# Boston, MA 02110-1301, USA.
#
"""
QAM modulation and demodulation.
"""
from math import pi, sqrt, log
from itertools import islice
from gnuradio import gr, gru, modulation_utils
from gnuradio.blks2impl.generic_mod_demod import generic_mod, generic_demod
# default values (used in __init__ and add_options)
_def_samples_per_symbol = 2
_def_excess_bw = 0.35
_def_verbose = False
_def_log = False
# Frequency correction
_def_freq_alpha = 0.010
# Symbol timing recovery
_def_timing_alpha = 0.100
_def_timing_beta = 0.010
_def_timing_max_dev = 1.5
# Fine frequency / Phase correction
_def_costas_alpha = 0.1
def is_power_of_four(x):
v = log(x)/log(4)
return int(v) == v
def get_bit(x, n):
""" Get the n'th bit of integer x (from little end)."""
return (x&(0x01 << n)) >> n
def get_bits(x, n, k):
""" Get the k bits of integer x starting at bit n(from little end)."""
# Remove the n smallest bits
v = x >> n
# Remove all bits bigger than n+k-1
return v % pow(2, k)
def gray_codes():
""" Generates gray codes."""
gcs = [0, 1]
yield 0
yield 1
# The last power of two passed through.
lp2 = 2
# The next power of two that will be passed through.
np2 = 4
i = 2
while True:
if i == lp2:
# if i is a power of two then gray number is of form 1100000...
result = i + i/2
else:
# if not we take advantage of the symmetry of all but the last bit
# around a power of two.
result = gcs[2*lp2-1-i] + lp2
gcs.append(result)
yield result
i += 1
if i == np2:
lp2 = i
np2 = i*2
def make_constellation(m):
"""
Create a constellation with m possible symbols where m must be
a power of 4.
Points are laid out in a square grid.
"""
sqrtm = pow(m, 0.5)
if (not isinstance(m, int) or m < 4 or not is_power_of_four(m)):
raise ValueError("m must be a power of 4 integer.")
# Each symbol holds k bits.
k = int(log(m) / log(2.0))
# First create a constellation for one quadrant containing m/4 points.
# The quadrant has 'side' points along each side of a quadrant.
side = int(sqrtm/2)
# Number rows and columns using gray codes.
gcs = list(islice(gray_codes(), side))
# Get inverse gray codes.
i_gcs = dict([(v, key) for key, v in enumerate(gcs)])
# The distance between points is found.
step = 1/(side-0.5)
gc_to_x = [(i_gcs[gc]+0.5)*step for gc in range(0, side)]
# Takes the (x, y) location of the point with the quadrant along
# with the quadrant number. (x, y) are integers referring to which
# point within the quadrant it is.
# A complex number representing this location of this point is returned.
def get_c(gc_x, gc_y, quad):
if quad == 0:
return complex(gc_to_x[gc_x], gc_to_x[gc_y])
if quad == 1:
return complex(-gc_to_x[gc_y], gc_to_x[gc_x])
if quad == 2:
return complex(-gc_to_x[gc_x], -gc_to_x[gc_y])
if quad == 3:
return complex(gc_to_x[gc_y], -gc_to_x[gc_x])
raise StandardError("Impossible!")
# First two bits determine quadrant.
# Next (k-2)/2 bits determine x position.
# Following (k-2)/2 bits determine y position.
# How x and y relate to real and imag depends on quadrant (see get_c function).
const_map = []
for i in range(m):
y = get_bits(i, 0, (k-2)/2)
x = get_bits(i, (k-2)/2, (k-2)/2)
quad = get_bits(i, k-2, 2)
const_map.append(get_c(x, y, quad))
return const_map
# /////////////////////////////////////////////////////////////////////////////
# QAM modulator
# /////////////////////////////////////////////////////////////////////////////
class qam_mod(generic_mod):
def __init__(self, m,
samples_per_symbol=_def_samples_per_symbol,
excess_bw=_def_excess_bw,
verbose=_def_verbose,
log=_def_log):
"""
Hierarchical block for RRC-filtered QAM modulation.
The input is a byte stream (unsigned char) and the
output is the complex modulated signal at baseband.
@param m: Number of constellation points. Must be a power of four.
@type m: integer
@param samples_per_symbol: samples per baud >= 2
@type samples_per_symbol: integer
@param excess_bw: Root-raised cosine filter excess bandwidth
@type excess_bw: float
@param verbose: Print information about modulator?
@type verbose: bool
@param log: Log modulation data to files?
@type log: bool
"""
if not isinstance(m, int) or not is_power_of_four(m):
raise ValueError("m must be a power of two integer greater than or equal to 4.")
points = make_constellation(m)
constellation = gr.gr_constellation(points)
super(qam_mod, self).__init__(constellation, samples_per_symbol,
excess_bw, verbose, log)
# /////////////////////////////////////////////////////////////////////////////
# QAM demodulator
#
# /////////////////////////////////////////////////////////////////////////////
class qam_demod(generic_demod):
def __init__(self, m,
samples_per_symbol=_def_samples_per_symbol,
excess_bw=_def_excess_bw,
freq_alpha=_def_freq_alpha,
timing_alpha=_def_timing_alpha,
timing_max_dev=_def_timing_max_dev,
costas_alpha=_def_costas_alpha,
verbose=_def_verbose,
log=_def_log):
"""
Hierarchical block for RRC-filtered QAM modulation.
The input is a byte stream (unsigned char) and the
output is the complex modulated signal at baseband.
@param m: Number of constellation points. Must be a power of four.
@type m: integer
@param samples_per_symbol: samples per symbol >= 2
@type samples_per_symbol: float
@param excess_bw: Root-raised cosine filter excess bandwidth
@type excess_bw: float
@param freq_alpha: loop filter gain for frequency recovery
@type freq_alpha: float
@param timing_alpha: loop alpha gain for timing recovery
@type timing_alpha: float
@param timing_max_dev: timing loop maximum rate deviations
@type timing_max_dev: float
@param costas_alpha: loop filter gain in costas loop
@type costas_alphas: float
@param verbose: Print information about modulator?
@type verbose: bool
@param debug: Print modualtion data to files?
@type debug: bool
"""
points = make_constellation(m)
constellation = gr.gr_constellation(points)
super(qam_demod, self).__init__(constellation, samples_per_symbol,
excess_bw, freq_alpha, timing_alpha,
timing_max_dev, costas_alpha, verbose,
log)
#
# Add these to the mod/demod registry
#
# NOT READY TO BE USED YET -- ENABLE AT YOUR OWN RISK
#modulation_utils.add_type_1_mod('qam16', qam16_mod)
#modulation_utils.add_type_1_demod('qam16', qam16_demod)
|