1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
|
/* -*- c++ -*- */
/*
* Copyright 2010 Free Software Foundation, Inc.
*
* This file is part of GNU Radio
*
* GNU Radio is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3, or (at your option)
* any later version.
*
* GNU Radio is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNU Radio; see the file COPYING. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street,
* Boston, MA 02110-1301, USA.
*/
#include <gr_io_signature.h>
#include <gr_constellation.h>
#include <gr_math.h>
#include <gr_complex.h>
gr_constellation_sptr
gr_make_constellation(std::vector<gr_complex> constellation)
{
return gr_constellation_sptr(new gr_constellation (constellation));
}
// Base Constellation Class
gr_constellation::gr_constellation (std::vector<gr_complex> constellation) {
d_constellation = constellation;
}
unsigned int get_closest_point(std::vector<gr_complex> constellation, gr_complex sample) {
unsigned int table_size = constellation.size();
unsigned int min_index = 0;
float min_euclid_dist;
float euclid_dist;
min_euclid_dist = norm(sample - constellation[0]);
min_index = 0;
for (unsigned int j = 1; j < table_size; j++){
euclid_dist = norm(sample - constellation[j]);
if (euclid_dist < min_euclid_dist){
min_euclid_dist = euclid_dist;
min_index = j;
}
}
return min_index;
}
// Chooses points base on shortest distance.
// Inefficient.
unsigned int gr_constellation::decision_maker(gr_complex sample)
{
unsigned int min_index;
min_index = get_closest_point(d_constellation, sample);
return min_index;
}
gr_constellation_sector_sptr
gr_make_constellation_sector(std::vector<gr_complex> constellation,
unsigned int real_sectors, unsigned int imag_sectors,
float width_real_sectors, float width_imag_sectors)
{
return gr_constellation_sector_sptr(new gr_constellation_sector (constellation, real_sectors, imag_sectors, width_real_sectors, width_imag_sectors));
}
gr_constellation_sector::gr_constellation_sector (std::vector<gr_complex> constellation,
unsigned int real_sectors, unsigned int imag_sectors,
float width_real_sectors, float width_imag_sectors) :
gr_constellation(constellation),
n_sectors(real_sectors * imag_sectors),
n_real_sectors(real_sectors), n_imag_sectors(imag_sectors),
d_width_real_sectors(width_real_sectors), d_width_imag_sectors(width_imag_sectors)
{
find_sector_values();
}
unsigned int gr_constellation_sector::decision_maker (gr_complex sample) {
unsigned int sector;
sector = get_sector(sample);
return sector_values[sector];
}
unsigned int gr_constellation_sector::get_sector (gr_complex sample) {
int real_sector, imag_sector;
unsigned int sector;
real_sector = int(real(sample)/d_width_real_sectors + n_real_sectors/2.0);
if (real_sector < 0) real_sector = 0;
if (real_sector >= n_real_sectors) real_sector = n_real_sectors-1;
imag_sector = int(imag(sample)/d_width_imag_sectors + n_imag_sectors/2.0);
if (imag_sector < 0) imag_sector = 0;
if (imag_sector >= n_imag_sectors) imag_sector = n_imag_sectors-1;
sector = real_sector * n_imag_sectors + imag_sector;
return sector;
}
unsigned int gr_constellation_sector::calc_sector_value (unsigned int sector) {
unsigned int real_sector, imag_sector;
gr_complex sector_center;
unsigned int closest_point;
real_sector = float(sector)/n_imag_sectors;
imag_sector = sector - real_sector * n_imag_sectors;
sector_center = gr_complex((real_sector + 0.5 - n_real_sectors/2.0) * d_width_real_sectors,
(imag_sector + 0.5 - n_imag_sectors/2.0) * d_width_imag_sectors);
closest_point = get_closest_point(d_constellation, sector_center);
return closest_point;
}
void gr_constellation_sector::find_sector_values () {
unsigned int i;
sector_values.clear();
for (i=0; i<n_sectors; i++) {
sector_values.push_back(calc_sector_value(i));
}
}
|