summaryrefslogtreecommitdiff
path: root/usrp/host/lib/usrp_standard.cc
diff options
context:
space:
mode:
Diffstat (limited to 'usrp/host/lib/usrp_standard.cc')
-rw-r--r--usrp/host/lib/usrp_standard.cc1175
1 files changed, 0 insertions, 1175 deletions
diff --git a/usrp/host/lib/usrp_standard.cc b/usrp/host/lib/usrp_standard.cc
deleted file mode 100644
index fe5afabdb5..0000000000
--- a/usrp/host/lib/usrp_standard.cc
+++ /dev/null
@@ -1,1175 +0,0 @@
-/* -*- c++ -*- */
-/*
- * Copyright 2004,2008,2009 Free Software Foundation, Inc.
- *
- * This file is part of GNU Radio
- *
- * GNU Radio is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation; either version 3, or (at your option)
- * any later version.
- *
- * GNU Radio is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with GNU Radio; see the file COPYING. If not, write to
- * the Free Software Foundation, Inc., 51 Franklin Street,
- * Boston, MA 02110-1301, USA.
- */
-
-#ifdef HAVE_CONFIG_H
-#include "config.h"
-#endif
-
-#include <usrp/usrp_standard.h>
-
-#include "usrp/usrp_prims.h"
-#include "fpga_regs_common.h"
-#include "fpga_regs_standard.h"
-#include <stdexcept>
-#include <assert.h>
-#include <math.h>
-#include <ad9862.h>
-#include <cstdio>
-
-
-static const int OLD_CAPS_VAL = 0xaa55ff77;
-static const int DEFAULT_CAPS_VAL = ((2 << bmFR_RB_CAPS_NDUC_SHIFT)
- | (2 << bmFR_RB_CAPS_NDDC_SHIFT)
- | bmFR_RB_CAPS_RX_HAS_HALFBAND);
-
-// #define USE_FPGA_TX_CORDIC
-
-
-using namespace ad9862;
-
-#define NELEM(x) (sizeof (x) / sizeof (x[0]))
-
-
-void
-usrp_standard_common::calc_dxc_freq(double target_freq, double baseband_freq, double fs,
- double *dxc_freq, bool *inverted)
-{
- /*
- Calculate the frequency to use for setting the digital up or down converter.
-
- @param target_freq: desired RF frequency (Hz)
- @param baseband_freq: the RF frequency that corresponds to DC in the IF.
- @param fs: converter sample rate
-
- @returns: 2-tuple (ddc_freq, inverted) where ddc_freq is the value
- for the ddc and inverted is True if we're operating in an inverted
- Nyquist zone.
- */
-
-#if 0
- printf("calc_dxc_freq:\n");
- printf(" target = %f\n", target_freq);
- printf(" baseband = %f\n", baseband_freq);
- printf(" fs = %f\n", fs);
-#endif
-
- double delta = target_freq - baseband_freq;
-
- if(delta >= 0) {
- while(delta > fs) {
- delta -= fs;
- }
- if(delta <= fs/2) { // non-inverted region
- *dxc_freq = -delta;
- *inverted = false;
- }
- else { // inverted region
- *dxc_freq = delta - fs;
- *inverted = true;
- }
- }
- else {
- while(delta < -fs) {
- delta += fs;
- }
- if(delta >= -fs/2) {
- *dxc_freq = -delta; // non-inverted region
- *inverted = false;
- }
- else { // inverted region
- *dxc_freq = delta + fs;
- *inverted = true;
- }
- }
-
-#if 0
- printf(" dxc_freq = %f\n", *dxc_freq);
- printf(" inverted = %s\n", *inverted ? "true" : "false");
-#endif
-}
-
-
-/*
- * Real lambda expressions would be _so_ much easier...
- */
-class dxc_control {
-public:
- virtual bool is_tx() = 0;
- virtual bool set_dxc_freq(double dxc_freq) = 0;
- virtual double dxc_freq() = 0;
-};
-
-class ddc_control : public dxc_control {
- usrp_standard_rx *d_u;
- int d_chan;
-
-public:
- ddc_control(usrp_standard_rx *u, int chan)
- : d_u(u), d_chan(chan) {}
-
- bool is_tx(){ return false; }
- bool set_dxc_freq(double dxc_freq){ return d_u->set_rx_freq(d_chan, dxc_freq); }
- double dxc_freq(){ return d_u->rx_freq(d_chan); }
-};
-
-class duc_control : public dxc_control {
- usrp_standard_tx *d_u;
- int d_chan;
-
-public:
- duc_control(usrp_standard_tx *u, int chan)
- : d_u(u), d_chan(chan) {}
-
- bool is_tx(){ return true; }
- bool set_dxc_freq(double dxc_freq){ return d_u->set_tx_freq(d_chan, dxc_freq); }
- double dxc_freq() { return d_u->tx_freq(d_chan); }
-};
-
-
-/*!
- * \brief Tune such that target_frequency ends up at DC in the complex baseband
- *
- * \param db the daughterboard to use
- * \param target_freq the center frequency we want at baseband (DC)
- * \param fs the sample rate
- * \param dxc DDC or DUC access and control object
- * \param[out] result details of what we did
- *
- * \returns true iff operation was successful
- *
- * Tuning is a two step process. First we ask the front-end to
- * tune as close to the desired frequency as it can. Then we use
- * the result of that operation and our target_frequency to
- * determine the value for the digital down converter.
- */
-static bool
-tune_a_helper(db_base_sptr db, double target_freq, double fs,
- dxc_control &dxc, usrp_tune_result *result)
-{
- bool inverted = false;
- double dxc_freq;
- double actual_dxc_freq;
-
- // Ask the d'board to tune as closely as it can to target_freq
-#if 0
- bool ok = db->set_freq(target_freq, &result->baseband_freq);
-#else
- bool ok;
- {
- freq_result_t fr = db->set_freq(target_freq);
- ok = fr.ok;
- result->baseband_freq = fr.baseband_freq;
- }
-#endif
-
- // Calculate the DDC setting that will downconvert the baseband from the
- // daughterboard to our target frequency.
- usrp_standard_common::calc_dxc_freq(target_freq, result->baseband_freq, fs,
- &dxc_freq, &inverted);
-
- // If the spectrum is inverted, and the daughterboard doesn't do
- // quadrature downconversion, we can fix the inversion by flipping the
- // sign of the dxc_freq... (This only happens using the basic_rx board)
-
- if(db->spectrum_inverted())
- inverted = !inverted;
-
- if(inverted && !db->is_quadrature()){
- dxc_freq = -dxc_freq;
- inverted = !inverted;
- }
-
- if (dxc.is_tx() && !db->i_and_q_swapped()) // down conversion versus up conversion
- dxc_freq = -dxc_freq;
-
- ok &= dxc.set_dxc_freq(dxc_freq);
- actual_dxc_freq = dxc.dxc_freq();
-
- result->dxc_freq = dxc_freq;
- result->residual_freq = dxc_freq - actual_dxc_freq;
- result->inverted = inverted;
- return ok;
-}
-
-
-static unsigned int
-compute_freq_control_word_fpga (double master_freq, double target_freq,
- double *actual_freq, bool verbose)
-{
- static const int NBITS = 14;
-
- int v = (int) rint (target_freq / master_freq * pow (2.0, 32.0));
-
- if (0)
- v = (v >> (32 - NBITS)) << (32 - NBITS); // keep only top NBITS
-
- *actual_freq = v * master_freq / pow (2.0, 32.0);
-
- if (verbose)
- fprintf (stderr,
- "compute_freq_control_word_fpga: target = %g actual = %g delta = %g\n",
- target_freq, *actual_freq, *actual_freq - target_freq);
-
- return (unsigned int) v;
-}
-
-// The 9862 uses an unsigned 24-bit frequency tuning word and
-// a separate register to control the sign.
-
-static unsigned int
-compute_freq_control_word_9862 (double master_freq, double target_freq,
- double *actual_freq, bool verbose)
-{
- double sign = 1.0;
-
- if (target_freq < 0)
- sign = -1.0;
-
- int v = (int) rint (fabs (target_freq) / master_freq * pow (2.0, 24.0));
- *actual_freq = v * master_freq / pow (2.0, 24.0) * sign;
-
- if (verbose)
- fprintf (stderr,
- "compute_freq_control_word_9862: target = %g actual = %g delta = %g v = %8d\n",
- target_freq, *actual_freq, *actual_freq - target_freq, v);
-
- return (unsigned int) v;
-}
-
-// ----------------------------------------------------------------
-
-usrp_standard_common::usrp_standard_common(usrp_basic *parent)
-{
- // read new FPGA capability register
- if (!parent->_read_fpga_reg(FR_RB_CAPS, &d_fpga_caps)){
- fprintf (stderr, "usrp_standard_common: failed to read FPGA cap register.\n");
- throw std::runtime_error ("usrp_standard_common::ctor");
- }
- // If we don't have the cap register, set the value to what it would
- // have had if we did have one ;)
- if (d_fpga_caps == OLD_CAPS_VAL)
- d_fpga_caps = DEFAULT_CAPS_VAL;
-
- if (0){
- fprintf(stdout, "has_rx_halfband = %d\n", has_rx_halfband());
- fprintf(stdout, "nddcs = %d\n", nddcs());
- fprintf(stdout, "has_tx_halfband = %d\n", has_tx_halfband());
- fprintf(stdout, "nducs = %d\n", nducs());
- }
-}
-
-bool
-usrp_standard_common::has_rx_halfband() const
-{
- return (d_fpga_caps & bmFR_RB_CAPS_RX_HAS_HALFBAND) ? true : false;
-}
-
-int
-usrp_standard_common::nddcs() const
-{
- return (d_fpga_caps & bmFR_RB_CAPS_NDDC_MASK) >> bmFR_RB_CAPS_NDDC_SHIFT;
-}
-
-bool
-usrp_standard_common::has_tx_halfband() const
-{
- return (d_fpga_caps & bmFR_RB_CAPS_TX_HAS_HALFBAND) ? true : false;
-}
-
-int
-usrp_standard_common::nducs() const
-{
- return (d_fpga_caps & bmFR_RB_CAPS_NDUC_MASK) >> bmFR_RB_CAPS_NDUC_SHIFT;
-}
-
-// ----------------------------------------------------------------
-
-static int
-real_rx_mux_value (int mux, int nchan)
-{
- if (mux != -1)
- return mux;
-
- return 0x32103210;
-}
-
-usrp_standard_rx::usrp_standard_rx (int which_board,
- unsigned int decim_rate,
- int nchan, int mux, int mode,
- int fusb_block_size, int fusb_nblocks,
- const std::string fpga_filename,
- const std::string firmware_filename
- )
- : usrp_basic_rx (which_board, fusb_block_size, fusb_nblocks,
- fpga_filename, firmware_filename),
- usrp_standard_common(this),
- d_nchan (1), d_sw_mux (0x0), d_hw_mux (0x0)
-{
- if (!set_format(make_format())){
- fprintf (stderr, "usrp_standard_rx: set_format failed\n");
- throw std::runtime_error ("usrp_standard_rx::ctor");
- }
- if (!set_nchannels (nchan)){
- fprintf (stderr, "usrp_standard_rx: set_nchannels failed\n");
- throw std::runtime_error ("usrp_standard_rx::ctor");
- }
- if (!set_decim_rate (decim_rate)){
- fprintf (stderr, "usrp_standard_rx: set_decim_rate failed\n");
- throw std::runtime_error ("usrp_standard_rx::ctor");
- }
- if (!set_mux (real_rx_mux_value (mux, nchan))){
- fprintf (stderr, "usrp_standard_rx: set_mux failed\n");
- throw std::runtime_error ("usrp_standard_rx::ctor");
- }
- if (!set_fpga_mode (mode)){
- fprintf (stderr, "usrp_standard_rx: set_fpga_mode failed\n");
- throw std::runtime_error ("usrp_standard_rx::ctor");
- }
-
- for (int i = 0; i < MAX_CHAN; i++){
- set_rx_freq(i, 0);
- set_ddc_phase(i, 0);
- }
-}
-
-usrp_standard_rx::~usrp_standard_rx ()
-{
- // fprintf(stderr, "\nusrp_standard_rx: dtor\n");
-}
-
-bool
-usrp_standard_rx::start ()
-{
- if (!usrp_basic_rx::start ())
- return false;
-
- // add our code here
-
- return true;
-}
-
-bool
-usrp_standard_rx::stop ()
-{
- bool ok = usrp_basic_rx::stop ();
-
- // add our code here
-
- return ok;
-}
-
-usrp_standard_rx_sptr
-usrp_standard_rx::make (int which_board,
- unsigned int decim_rate,
- int nchan, int mux, int mode,
- int fusb_block_size, int fusb_nblocks,
- const std::string fpga_filename,
- const std::string firmware_filename
- )
-{
- try {
- usrp_standard_rx_sptr u =
- usrp_standard_rx_sptr(new usrp_standard_rx(which_board, decim_rate,
- nchan, mux, mode,
- fusb_block_size, fusb_nblocks,
- fpga_filename, firmware_filename));
- u->init_db(u);
- return u;
- }
- catch (...){
- return usrp_standard_rx_sptr();
- }
-}
-
-bool
-usrp_standard_rx::set_decim_rate(unsigned int rate)
-{
- if (has_rx_halfband()){
- if ((rate & 0x1) || rate < 4 || rate > 256){
- fprintf (stderr, "usrp_standard_rx::set_decim_rate: rate must be EVEN and in [4, 256]\n");
- return false;
- }
- }
- else {
- if (rate < 4 || rate > 128){
- fprintf (stderr, "usrp_standard_rx::set_decim_rate: rate must be in [4, 128]\n");
- return false;
- }
- }
-
- d_decim_rate = rate;
- set_usb_data_rate ((adc_rate () / rate * nchannels ())
- * (2 * sizeof (short)));
-
- bool s = disable_rx ();
- int v = has_rx_halfband() ? d_decim_rate/2 - 1 : d_decim_rate - 1;
- bool ok = _write_fpga_reg (FR_DECIM_RATE, v);
- restore_rx (s);
- return ok;
-}
-
-bool usrp_standard_rx::set_nchannels (int nchan)
-{
- if (!(nchan == 1 || nchan == 2 || nchan == 4))
- return false;
-
- if (nchan > nddcs())
- return false;
-
- d_nchan = nchan;
-
- return write_hw_mux_reg ();
-}
-
-
-// map software mux value to hw mux value
-//
-// Software mux value:
-//
-// 3 2 1
-// 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
-// +-------+-------+-------+-------+-------+-------+-------+-------+
-// | Q3 | I3 | Q2 | I2 | Q1 | I1 | Q0 | I0 |
-// +-------+-------+-------+-------+-------+-------+-------+-------+
-//
-// Each 4-bit I field is either 0,1,2,3
-// Each 4-bit Q field is either 0,1,2,3 or 0xf (input is const zero)
-// All Q's must be 0xf or none of them may be 0xf
-//
-//
-// Hardware mux value:
-//
-// 3 2 1
-// 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
-// +-----------------------+-------+-------+-------+-------+-+-----+
-// | must be zero | Q3| I3| Q2| I2| Q1| I1| Q0| I0|Z| NCH |
-// +-----------------------+-------+-------+-------+-------+-+-----+
-
-
-static bool
-map_sw_mux_to_hw_mux (int sw_mux, int *hw_mux_ptr)
-{
- // confirm that all I's are either 0,1,2,3
-
- for (int i = 0; i < 8; i += 2){
- int t = (sw_mux >> (4 * i)) & 0xf;
- if (!(0 <= t && t <= 3))
- return false;
- }
-
- // confirm that all Q's are either 0,1,2,3 or 0xf
-
- for (int i = 1; i < 8; i += 2){
- int t = (sw_mux >> (4 * i)) & 0xf;
- if (!(t == 0xf || (0 <= t && t <= 3)))
- return false;
- }
-
- // confirm that all Q inputs are 0xf (const zero input),
- // or none of them are 0xf
-
- int q_and = 1;
- int q_or = 0;
-
- for (int i = 0; i < 4; i++){
- int qx_is_0xf = ((sw_mux >> (8 * i + 4)) & 0xf) == 0xf;
- q_and &= qx_is_0xf;
- q_or |= qx_is_0xf;
- }
-
- if (q_and || !q_or){ // OK
- int hw_mux_value = 0;
-
- for (int i = 0; i < 8; i++){
- int t = (sw_mux >> (4 * i)) & 0x3;
- hw_mux_value |= t << (2 * i + 4);
- }
-
- if (q_and)
- hw_mux_value |= 0x8; // all Q's zero
-
- *hw_mux_ptr = hw_mux_value;
- return true;
- }
- else
- return false;
-}
-
-bool
-usrp_standard_rx::set_mux (int mux)
-{
- if (!map_sw_mux_to_hw_mux (mux, &d_hw_mux))
- return false;
-
- // fprintf (stderr, "sw_mux = 0x%08x hw_mux = 0x%08x\n", mux, d_hw_mux);
-
- d_sw_mux = mux;
- return write_hw_mux_reg ();
-}
-
-bool
-usrp_standard_rx::write_hw_mux_reg ()
-{
- bool s = disable_rx ();
- bool ok = _write_fpga_reg (FR_RX_MUX, d_hw_mux | d_nchan);
- restore_rx (s);
- return ok;
-}
-
-int
-usrp_standard_rx::determine_rx_mux_value(const usrp_subdev_spec &ss)
-{
- /*
- Determine appropriate Rx mux value as a function of the subdevice choosen and the
- characteristics of the respective daughterboard.
-
- @param u: instance of USRP source
- @param subdev_spec: return value from subdev option parser.
- @type subdev_spec: (side, subdev), where side is 0 or 1 and subdev is 0 or 1
- @returns: the Rx mux value
-
- Figure out which A/D's to connect to the DDC.
-
- Each daughterboard consists of 1 or 2 subdevices. (At this time,
- all but the Basic Rx have a single subdevice. The Basic Rx
- has two independent channels, treated as separate subdevices).
- subdevice 0 of a daughterboard may use 1 or 2 A/D's. We determine this
- by checking the is_quadrature() method. If subdevice 0 uses only a single
- A/D, it's possible that the daughterboard has a second subdevice, subdevice 1,
- and it uses the second A/D.
-
- If the card uses only a single A/D, we wire a zero into the DDC Q input.
-
- (side, 0) says connect only the A/D's used by subdevice 0 to the DDC.
- (side, 1) says connect only the A/D's used by subdevice 1 to the DDC.
- */
-
- struct truth_table_element
- {
- int d_side;
- int d_uses;
- bool d_swap_iq;
- unsigned int d_mux_val;
-
- truth_table_element(int side, unsigned int uses, bool swap_iq, unsigned int mux_val=0)
- : d_side(side), d_uses(uses), d_swap_iq(swap_iq), d_mux_val(mux_val){}
-
- bool operator==(const truth_table_element &in)
- {
- return (d_side == in.d_side && d_uses == in.d_uses && d_swap_iq == in.d_swap_iq);
- }
-
- unsigned int mux_val() { return d_mux_val; }
- };
-
-
- if (!is_valid(ss))
- throw std::invalid_argument("subdev_spec");
-
-
- // This is a tuple of length 1 or 2 containing the subdevice
- // classes for the selected side.
- std::vector<db_base_sptr> db = this->db(ss.side);
-
- unsigned int uses;
-
- // compute bitmasks of used A/D's
-
- if(db[ss.subdev]->is_quadrature())
- uses = 0x3; // uses A/D 0 and 1
- else if (ss.subdev == 0)
- uses = 0x1; // uses A/D 0 only
- else if(ss.subdev == 1)
- uses = 0x2; // uses A/D 1 only
- else
- uses = 0x0; // uses no A/D (doesn't exist)
-
- if(uses == 0){
- throw std::runtime_error("Determine RX Mux Error");
- }
-
- bool swap_iq = db[ss.subdev]->i_and_q_swapped();
-
- truth_table_element truth_table[8] = {
- // (side, uses, swap_iq) : mux_val
- truth_table_element(0, 0x1, false, 0xf0f0f0f0),
- truth_table_element(0, 0x2, false, 0xf0f0f0f1),
- truth_table_element(0, 0x3, false, 0x00000010),
- truth_table_element(0, 0x3, true, 0x00000001),
- truth_table_element(1, 0x1, false, 0xf0f0f0f2),
- truth_table_element(1, 0x2, false, 0xf0f0f0f3),
- truth_table_element(1, 0x3, false, 0x00000032),
- truth_table_element(1, 0x3, true, 0x00000023)
- };
- size_t nelements = sizeof(truth_table)/sizeof(truth_table[0]);
-
- truth_table_element target(ss.side, uses, swap_iq, 0);
-
- size_t i;
- for(i = 0; i < nelements; i++){
- if (truth_table[i] == target)
- return truth_table[i].mux_val();
- }
- throw std::runtime_error("internal error");
-}
-
-int
-usrp_standard_rx::determine_rx_mux_value(const usrp_subdev_spec &ss_a, const usrp_subdev_spec &ss_b)
-{
- std::vector<db_base_sptr> db_a = this->db(ss_a.side);
- std::vector<db_base_sptr> db_b = this->db(ss_b.side);
- if (db_a[ss_a.subdev]->is_quadrature() != db_b[ss_b.subdev]->is_quadrature()){
- throw std::runtime_error("Cannot compute dual mux when mixing quadrature and non-quadrature subdevices");
- }
- int mux_a = determine_rx_mux_value(ss_a);
- int mux_b = determine_rx_mux_value(ss_b);
- //move the lower byte of the mux b into the second byte of the mux a
- return ((mux_b & 0xff) << 8) | (mux_a & 0xffff00ff);
-}
-
-bool
-usrp_standard_rx::set_rx_freq (int channel, double freq)
-{
- if (channel < 0 || channel > MAX_CHAN)
- return false;
-
- unsigned int v =
- compute_freq_control_word_fpga (adc_rate(),
- freq, &d_rx_freq[channel],
- d_verbose);
-
- return _write_fpga_reg (FR_RX_FREQ_0 + channel, v);
-}
-
-unsigned int
-usrp_standard_rx::decim_rate () const { return d_decim_rate; }
-
-int
-usrp_standard_rx::nchannels () const { return d_nchan; }
-
-int
-usrp_standard_rx::mux () const { return d_sw_mux; }
-
-double
-usrp_standard_rx::rx_freq (int channel) const
-{
- if (channel < 0 || channel >= MAX_CHAN)
- return 0;
-
- return d_rx_freq[channel];
-}
-
-bool
-usrp_standard_rx::set_fpga_mode (int mode)
-{
- return _write_fpga_reg (FR_MODE, mode);
-}
-
-bool
-usrp_standard_rx::set_ddc_phase(int channel, int phase)
-{
- if (channel < 0 || channel >= MAX_CHAN)
- return false;
-
- return _write_fpga_reg(FR_RX_PHASE_0 + channel, phase);
-}
-
-
-// To avoid quiet failures, check for things that our code cares about.
-
-static bool
-rx_format_is_valid(unsigned int format)
-{
- int width = usrp_standard_rx::format_width(format);
- int want_q = usrp_standard_rx::format_want_q(format);
-
- if (!(width == 8 || width == 16)) // FIXME add other widths when valid
- return false;
-
- if (!want_q) // FIXME remove check when the rest of the code can handle I only
- return false;
-
- return true;
-}
-
-bool
-usrp_standard_rx::set_format(unsigned int format)
-{
- if (!rx_format_is_valid(format))
- return false;
-
- return _write_fpga_reg(FR_RX_FORMAT, format);
-}
-
-unsigned int
-usrp_standard_rx::format() const
-{
- return d_fpga_shadows[FR_RX_FORMAT];
-}
-
-// ----------------------------------------------------------------
-
-unsigned int
-usrp_standard_rx::make_format(int width, int shift, bool want_q, bool bypass_halfband)
-{
- unsigned int format =
- (((width << bmFR_RX_FORMAT_WIDTH_SHIFT) & bmFR_RX_FORMAT_WIDTH_MASK)
- | ((shift << bmFR_RX_FORMAT_SHIFT_SHIFT) & bmFR_RX_FORMAT_SHIFT_MASK));
-
- if (want_q)
- format |= bmFR_RX_FORMAT_WANT_Q;
- if (bypass_halfband)
- format |= bmFR_RX_FORMAT_BYPASS_HB;
-
- return format;
-}
-
-int
-usrp_standard_rx::format_width(unsigned int format)
-{
- return (format & bmFR_RX_FORMAT_WIDTH_MASK) >> bmFR_RX_FORMAT_WIDTH_SHIFT;
-}
-
-int
-usrp_standard_rx::format_shift(unsigned int format)
-{
- return (format & bmFR_RX_FORMAT_SHIFT_MASK) >> bmFR_RX_FORMAT_SHIFT_SHIFT;
-}
-
-bool
-usrp_standard_rx::format_want_q(unsigned int format)
-{
- return (format & bmFR_RX_FORMAT_WANT_Q) != 0;
-}
-
-bool
-usrp_standard_rx::format_bypass_halfband(unsigned int format)
-{
- return (format & bmFR_RX_FORMAT_BYPASS_HB) != 0;
-}
-
-bool
-usrp_standard_rx::tune(int chan, db_base_sptr db, double target_freq, usrp_tune_result *result)
-{
- ddc_control dxc(this, chan);
- return tune_a_helper(db, target_freq, converter_rate(), dxc, result);
-}
-
-
-//////////////////////////////////////////////////////////////////
-
-
-// tx data is timed to CLKOUT1 (64 MHz)
-// interpolate 4x
-// fine modulator enabled
-
-
-static unsigned char tx_regs_use_nco[] = {
- REG_TX_IF, (TX_IF_USE_CLKOUT1
- | TX_IF_I_FIRST
- | TX_IF_2S_COMP
- | TX_IF_INTERLEAVED),
- REG_TX_DIGITAL, (TX_DIGITAL_2_DATA_PATHS
- | TX_DIGITAL_INTERPOLATE_4X)
-};
-
-
-static int
-real_tx_mux_value (int mux, int nchan)
-{
- if (mux != -1)
- return mux;
-
- switch (nchan){
- case 1:
- return 0x0098;
- case 2:
- return 0xba98;
- default:
- assert (0);
- }
-}
-
-usrp_standard_tx::usrp_standard_tx (int which_board,
- unsigned int interp_rate,
- int nchan, int mux,
- int fusb_block_size, int fusb_nblocks,
- const std::string fpga_filename,
- const std::string firmware_filename
- )
- : usrp_basic_tx (which_board, fusb_block_size, fusb_nblocks, fpga_filename, firmware_filename),
- usrp_standard_common(this),
- d_sw_mux (0x8), d_hw_mux (0x81)
-{
- if (!usrp_9862_write_many_all (d_udh, tx_regs_use_nco, sizeof (tx_regs_use_nco))){
- fprintf (stderr, "usrp_standard_tx: failed to init AD9862 TX regs\n");
- throw std::runtime_error ("usrp_standard_tx::ctor");
- }
- if (!set_nchannels (nchan)){
- fprintf (stderr, "usrp_standard_tx: set_nchannels failed\n");
- throw std::runtime_error ("usrp_standard_tx::ctor");
- }
- if (!set_interp_rate (interp_rate)){
- fprintf (stderr, "usrp_standard_tx: set_interp_rate failed\n");
- throw std::runtime_error ("usrp_standard_tx::ctor");
- }
- if (!set_mux (real_tx_mux_value (mux, nchan))){
- fprintf (stderr, "usrp_standard_tx: set_mux failed\n");
- throw std::runtime_error ("usrp_standard_tx::ctor");
- }
-
- for (int i = 0; i < MAX_CHAN; i++){
- d_tx_modulator_shadow[i] = (TX_MODULATOR_DISABLE_NCO
- | TX_MODULATOR_COARSE_MODULATION_NONE);
- d_coarse_mod[i] = CM_OFF;
- set_tx_freq (i, 0);
- }
-}
-
-usrp_standard_tx::~usrp_standard_tx ()
-{
- // fprintf(stderr, "\nusrp_standard_tx: dtor\n");
-}
-
-bool
-usrp_standard_tx::start ()
-{
- if (!usrp_basic_tx::start ())
- return false;
-
- // add our code here
-
- return true;
-}
-
-bool
-usrp_standard_tx::stop ()
-{
- bool ok = usrp_basic_tx::stop ();
-
- // add our code here
-
- return ok;
-}
-
-usrp_standard_tx_sptr
-usrp_standard_tx::make (int which_board,
- unsigned int interp_rate,
- int nchan, int mux,
- int fusb_block_size, int fusb_nblocks,
- const std::string fpga_filename,
- const std::string firmware_filename
- )
-{
- try {
- usrp_standard_tx_sptr u =
- usrp_standard_tx_sptr(new usrp_standard_tx(which_board, interp_rate, nchan, mux,
- fusb_block_size, fusb_nblocks,
- fpga_filename, firmware_filename));
- u->init_db(u);
- return u;
- }
- catch (...){
- return usrp_standard_tx_sptr();
- }
-}
-
-bool
-usrp_standard_tx::set_interp_rate (unsigned int rate)
-{
- // fprintf (stderr, "usrp_standard_tx::set_interp_rate\n");
-
- if ((rate & 0x3) || rate < 4 || rate > 512){
- fprintf (stderr, "usrp_standard_tx::set_interp_rate: rate must be in [4, 512] and a multiple of 4.\n");
- return false;
- }
-
- d_interp_rate = rate;
- set_usb_data_rate ((dac_rate () / rate * nchannels ())
- * (2 * sizeof (short)));
-
- // We're using the interp by 4 feature of the 9862 so that we can
- // use its fine modulator. Thus, we reduce the FPGA's interpolation rate
- // by a factor of 4.
-
- bool s = disable_tx ();
- bool ok = _write_fpga_reg (FR_INTERP_RATE, d_interp_rate/4 - 1);
- restore_tx (s);
- return ok;
-}
-
-bool
-usrp_standard_tx::set_nchannels (int nchan)
-{
- if (!(nchan == 1 || nchan == 2))
- return false;
-
- if (nchan > nducs())
- return false;
-
- d_nchan = nchan;
- return write_hw_mux_reg ();
-}
-
-bool
-usrp_standard_tx::set_mux (int mux)
-{
- d_sw_mux = mux;
- d_hw_mux = mux << 4;
- return write_hw_mux_reg ();
-}
-
-bool
-usrp_standard_tx::write_hw_mux_reg ()
-{
- bool s = disable_tx ();
- bool ok = _write_fpga_reg (FR_TX_MUX, d_hw_mux | d_nchan);
- restore_tx (s);
- return ok;
-}
-
-int
-usrp_standard_tx::determine_tx_mux_value(const usrp_subdev_spec &ss)
-{
- /*
- Determine appropriate Tx mux value as a function of the subdevice choosen.
-
- @param u: instance of USRP source
- @param subdev_spec: return value from subdev option parser.
- @type subdev_spec: (side, subdev), where side is 0 or 1 and subdev is 0
- @returns: the Rx mux value
-
- This is simpler than the rx case. Either you want to talk
- to side A or side B. If you want to talk to both sides at once,
- determine the value manually.
- */
-
- if (!is_valid(ss))
- throw std::invalid_argument("subdev_spec");
-
- std::vector<db_base_sptr> db = this->db(ss.side);
-
- if(db[ss.subdev]->i_and_q_swapped()) {
- unsigned int mask[2] = {0x0089, 0x8900};
- return mask[ss.side];
- }
- else {
- unsigned int mask[2] = {0x0098, 0x9800};
- return mask[ss.side];
- }
-}
-
-int
-usrp_standard_tx::determine_tx_mux_value(const usrp_subdev_spec &ss_a, const usrp_subdev_spec &ss_b)
-{
- if (ss_a.side == ss_b.side && ss_a.subdev == ss_b.subdev){
- throw std::runtime_error("Cannot compute dual mux, repeated subdevice");
- }
- int mux_a = determine_tx_mux_value(ss_a);
- //Get the mux b:
- // DAC0 becomes DAC2
- // DAC1 becomes DAC3
- unsigned int mask[2] = {0x0022, 0x2200};
- int mux_b = determine_tx_mux_value(ss_b) + mask[ss_b.side];
- return mux_b | mux_a;
-}
-
-#ifdef USE_FPGA_TX_CORDIC
-
-bool
-usrp_standard_tx::set_tx_freq (int channel, double freq)
-{
- if (channel < 0 || channel >= MAX_CHAN)
- return false;
-
- // This assumes we're running the 4x on-chip interpolator.
-
- unsigned int v =
- compute_freq_control_word_fpga (dac_rate () / 4,
- freq, &d_tx_freq[channel],
- d_verbose);
-
- return _write_fpga_reg (FR_TX_FREQ_0 + channel, v);
-}
-
-
-#else
-
-bool
-usrp_standard_tx::set_tx_freq (int channel, double freq)
-{
- if (channel < 0 || channel >= MAX_CHAN)
- return false;
-
- // split freq into fine and coarse components
-
- coarse_mod_t cm;
- double coarse;
-
- double coarse_freq_1 = dac_rate () / 8; // First coarse frequency
- double coarse_freq_2 = dac_rate () / 4; // Second coarse frequency
- double coarse_limit_1 = coarse_freq_1 / 2; // Midpoint of [0 , freq1] range
- double coarse_limit_2 = (coarse_freq_1 + coarse_freq_2) / 2; // Midpoint of [freq1 , freq2] range
- double high_limit = (double)44e6/128e6*dac_rate (); // Highest meaningful frequency
-
- if (freq < -high_limit) // too low
- return false;
- else if (freq < -coarse_limit_2){ // For 64MHz: [-44, -24)
- cm = CM_NEG_FDAC_OVER_4;
- coarse = -coarse_freq_2;
- }
- else if (freq < -coarse_limit_1){ // For 64MHz: [-24, -8)
- cm = CM_NEG_FDAC_OVER_8;
- coarse = -coarse_freq_1;
- }
- else if (freq < coarse_limit_1){ // For 64MHz: [-8, 8)
- cm = CM_OFF;
- coarse = 0;
- }
- else if (freq < coarse_limit_2){ // For 64MHz: [8, 24)
- cm = CM_POS_FDAC_OVER_8;
- coarse = coarse_freq_1;
- }
- else if (freq <= high_limit){ // For 64MHz: [24, 44]
- cm = CM_POS_FDAC_OVER_4;
- coarse = coarse_freq_2;
- }
- else // too high
- return false;
-
-
- set_coarse_modulator (channel, cm); // set bits in d_tx_modulator_shadow
-
- double fine = freq - coarse;
-
-
- // Compute fine tuning word...
- // This assumes we're running the 4x on-chip interpolator.
- // (This is required to use the fine modulator.)
-
- unsigned int v =
- compute_freq_control_word_9862 (dac_rate () / 4,
- fine, &d_tx_freq[channel], d_verbose);
-
- d_tx_freq[channel] += coarse; // adjust actual
-
- unsigned char high, mid, low;
-
- high = (v >> 16) & 0xff;
- mid = (v >> 8) & 0xff;
- low = (v >> 0) & 0xff;
-
- bool ok = true;
-
- // write the fine tuning word
- ok &= _write_9862 (channel, REG_TX_NCO_FTW_23_16, high);
- ok &= _write_9862 (channel, REG_TX_NCO_FTW_15_8, mid);
- ok &= _write_9862 (channel, REG_TX_NCO_FTW_7_0, low);
-
-
- d_tx_modulator_shadow[channel] |= TX_MODULATOR_ENABLE_NCO;
-
- if (fine < 0)
- d_tx_modulator_shadow[channel] |= TX_MODULATOR_NEG_FINE_TUNE;
- else
- d_tx_modulator_shadow[channel] &= ~TX_MODULATOR_NEG_FINE_TUNE;
-
- ok &=_write_9862 (channel, REG_TX_MODULATOR, d_tx_modulator_shadow[channel]);
-
- return ok;
-}
-#endif
-
-bool
-usrp_standard_tx::set_coarse_modulator (int channel, coarse_mod_t cm)
-{
- if (channel < 0 || channel >= MAX_CHAN)
- return false;
-
- switch (cm){
- case CM_NEG_FDAC_OVER_4:
- d_tx_modulator_shadow[channel] &= ~TX_MODULATOR_CM_MASK;
- d_tx_modulator_shadow[channel] |= TX_MODULATOR_COARSE_MODULATION_F_OVER_4;
- d_tx_modulator_shadow[channel] |= TX_MODULATOR_NEG_COARSE_TUNE;
- break;
-
- case CM_NEG_FDAC_OVER_8:
- d_tx_modulator_shadow[channel] &= ~TX_MODULATOR_CM_MASK;
- d_tx_modulator_shadow[channel] |= TX_MODULATOR_COARSE_MODULATION_F_OVER_8;
- d_tx_modulator_shadow[channel] |= TX_MODULATOR_NEG_COARSE_TUNE;
- break;
-
- case CM_OFF:
- d_tx_modulator_shadow[channel] &= ~TX_MODULATOR_CM_MASK;
- break;
-
- case CM_POS_FDAC_OVER_8:
- d_tx_modulator_shadow[channel] &= ~TX_MODULATOR_CM_MASK;
- d_tx_modulator_shadow[channel] |= TX_MODULATOR_COARSE_MODULATION_F_OVER_8;
- break;
-
- case CM_POS_FDAC_OVER_4:
- d_tx_modulator_shadow[channel] &= ~TX_MODULATOR_CM_MASK;
- d_tx_modulator_shadow[channel] |= TX_MODULATOR_COARSE_MODULATION_F_OVER_4;
- break;
-
- default:
- return false;
- }
-
- d_coarse_mod[channel] = cm;
- return true;
-}
-
-unsigned int
-usrp_standard_tx::interp_rate () const { return d_interp_rate; }
-
-int
-usrp_standard_tx::nchannels () const { return d_nchan; }
-
-int
-usrp_standard_tx::mux () const { return d_sw_mux; }
-
-double
-usrp_standard_tx::tx_freq (int channel) const
-{
- if (channel < 0 || channel >= MAX_CHAN)
- return 0;
-
- return d_tx_freq[channel];
-}
-
-usrp_standard_tx::coarse_mod_t
-usrp_standard_tx::coarse_modulator (int channel) const
-{
- if (channel < 0 || channel >= MAX_CHAN)
- return CM_OFF;
-
- return d_coarse_mod[channel];
-}
-
-bool
-usrp_standard_tx::tune(int chan, db_base_sptr db, double target_freq, usrp_tune_result *result)
-{
- duc_control dxc(this, chan);
- return tune_a_helper(db, target_freq, converter_rate(), dxc, result);
-}