summaryrefslogtreecommitdiff
path: root/gr-trellis/src/lib/fsm.cc
diff options
context:
space:
mode:
Diffstat (limited to 'gr-trellis/src/lib/fsm.cc')
-rw-r--r--gr-trellis/src/lib/fsm.cc646
1 files changed, 323 insertions, 323 deletions
diff --git a/gr-trellis/src/lib/fsm.cc b/gr-trellis/src/lib/fsm.cc
index f343088343..2cf1a6d5ab 100644
--- a/gr-trellis/src/lib/fsm.cc
+++ b/gr-trellis/src/lib/fsm.cc
@@ -1,323 +1,323 @@
-/* -*- c++ -*- */
-/*
- * Copyright 2002 Free Software Foundation, Inc.
- *
- * This file is part of GNU Radio
- *
- * GNU Radio is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation; either version 2, or (at your option)
- * any later version.
- *
- * GNU Radio is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with GNU Radio; see the file COPYING. If not, write to
- * the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
- * Boston, MA 02111-1307, USA.
- */
-
-#include <cstdio>
-#include <stdexcept>
-#include <cmath>
-#include "base.h"
-#include "fsm.h"
-
-
-fsm::fsm()
-{
- d_I=0;
- d_S=0;
- d_O=0;
- d_NS.resize(0);
- d_OS.resize(0);
- d_PS.resize(0);
- d_PI.resize(0);
- d_TMi.resize(0);
- d_TMl.resize(0);
-}
-
-fsm::fsm(const fsm &FSM)
-{
- d_I=FSM.I();
- d_S=FSM.S();
- d_O=FSM.O();
- d_NS=FSM.NS();
- d_OS=FSM.OS();
- d_PS=FSM.PS();
- d_PI=FSM.PI();
- d_TMi=FSM.TMi();
- d_TMl=FSM.TMl();
-}
-
-fsm::fsm(int I, int S, int O, const std::vector<int> &NS, const std::vector<int> &OS)
-{
- d_I=I;
- d_S=S;
- d_O=O;
- d_NS=NS;
- d_OS=OS;
-
- generate_PS_PI();
- generate_TM();
-}
-
-//######################################################################
-//# Read an FSM specification from a file.
-//# Format (hopefully will become more flexible in the future...):
-//# I S O (in the first line)
-//# blank line
-//# Next state matrix (S lines, each with I integers separated by spaces)
-//# blank line
-//# output symbol matrix (S lines, each with I integers separated by spaces)
-//# optional comments
-//######################################################################
-fsm::fsm(const char *name)
-{
- FILE *fsmfile;
-
- if((fsmfile=fopen(name,"r"))==NULL)
- throw std::runtime_error ("fsm::fsm(const char *name): file open error\n");
- //printf("file open error in fsm()\n");
-
- fscanf(fsmfile,"%d %d %d\n",&d_I,&d_S,&d_O);
- d_NS.resize(d_I*d_S);
- d_OS.resize(d_I*d_S);
-
- for(int i=0;i<d_S;i++) {
- for(int j=0;j<d_I;j++) fscanf(fsmfile,"%d",&(d_NS[i*d_I+j]));
- }
- for(int i=0;i<d_S;i++) {
- for(int j=0;j<d_I;j++) fscanf(fsmfile,"%d",&(d_OS[i*d_I+j]));
- }
-
- generate_PS_PI();
- generate_TM();
-}
-
-
-
-
-//######################################################################
-//# Automatically generate the FSM from the generator matrix
-//# of a (n,k) binary convolutional code
-//######################################################################
-fsm::fsm(int k, int n, const std::vector<int> &G)
-{
-
- // calculate maximum memory requirements for each input stream
- std::vector<int> max_mem_x(k,-1);
- int max_mem = -1;
- for(int i=0;i<k;i++) {
- for(int j=0;j<n;j++) {
- int mem = -1;
- if(G[i*n+j]!=0)
- mem=(int)(log(G[i*n+j])/log(2.0));
- if(mem>max_mem_x[i])
- max_mem_x[i]=mem;
- if(mem>max_mem)
- max_mem=mem;
- }
- }
-
-//printf("max_mem_x\n");
-//for(int j=0;j<max_mem_x.size();j++) printf("%d ",max_mem_x[j]); printf("\n");
-
- // calculate total memory requirements to set S
- int sum_max_mem = 0;
- for(int i=0;i<k;i++)
- sum_max_mem += max_mem_x[i];
-
-//printf("sum_max_mem = %d\n",sum_max_mem);
-
- d_I=1<<k;
- d_S=1<<sum_max_mem;
- d_O=1<<n;
-
- // binary representation of the G matrix
- std::vector<std::vector<int> > Gb(k*n);
- for(int j=0;j<k*n;j++) {
- Gb[j].resize(max_mem+1);
- dec2base(G[j],2,Gb[j]);
-//printf("Gb\n");
-//for(int m=0;m<Gb[j].size();m++) printf("%d ",Gb[j][m]); printf("\n");
- }
-
- // alphabet size of each shift register
- std::vector<int> bases_x(k);
- for(int j=0;j<k ;j++)
- bases_x[j] = 1 << max_mem_x[j];
-//printf("bases_x\n");
-//for(int j=0;j<max_mem_x.size();j++) printf("%d ",max_mem_x[j]); printf("\n");
-
- d_NS.resize(d_I*d_S);
- d_OS.resize(d_I*d_S);
-
- std::vector<int> sx(k);
- std::vector<int> nsx(k);
- std::vector<int> tx(k);
- std::vector<std::vector<int> > tb(k);
- for(int j=0;j<k;j++)
- tb[j].resize(max_mem+1);
- std::vector<int> inb(k);
- std::vector<int> outb(n);
-
-
- for(int s=0;s<d_S;s++) {
- dec2bases(s,bases_x,sx); // split s into k values, each representing on of the k shift registers
-//printf("state = %d \nstates = ",s);
-//for(int j=0;j<sx.size();j++) printf("%d ",sx[j]); printf("\n");
- for(int i=0;i<d_I;i++) {
- dec2base(i,2,inb); // input in binary
-//printf("input = %d \ninputs = ",i);
-//for(int j=0;j<inb.size();j++) printf("%d ",inb[j]); printf("\n");
-
- // evaluate next state
- for(int j=0;j<k;j++)
- nsx[j] = (inb[j]*bases_x[j]+sx[j])/2; // next state (for each shift register) MSB first
- d_NS[s*d_I+i]=bases2dec(nsx,bases_x); // collect all values into the new state
-
- // evaluate transitions
- for(int j=0;j<k;j++)
- tx[j] = inb[j]*bases_x[j]+sx[j]; // transition (for each shift register)MSB first
- for(int j=0;j<k;j++) {
- dec2base(tx[j],2,tb[j]); // transition in binary
-//printf("transition = %d \ntransitions = ",tx[j]);
-//for(int m=0;m<tb[j].size();m++) printf("%d ",tb[j][m]); printf("\n");
- }
-
- // evaluate outputs
- for(int nn=0;nn<n;nn++) {
- outb[nn] = 0;
- for(int j=0;j<k;j++) {
- for(int m=0;m<max_mem+1;m++)
- outb[nn] = (outb[nn] + Gb[j*n+nn][m]*tb[j][m]) % 2; // careful: polynomial 1+D ir represented as 110, not as 011
-//printf("output %d equals %d\n",nn,outb[nn]);
- }
- }
- d_OS[s*d_I+i] = base2dec(outb,2);
- }
- }
-
- generate_PS_PI();
- generate_TM();
-}
-
-
-
-
-//######################################################################
-//# Automatically generate an FSM specification describing the
-//# ISI for a channel
-//# of length ch_length and a modulation of size mod_size
-//######################################################################
-fsm::fsm(int mod_size, int ch_length)
-{
- d_I=mod_size;
- d_S=(int) (pow(1.0*d_I,1.0*ch_length-1)+0.5);
- d_O=d_S*d_I;
-
- d_NS.resize(d_I*d_S);
- d_OS.resize(d_I*d_S);
-
- for(int s=0;s<d_S;s++) {
- for(int i=0;i<d_I;i++) {
- int t=i*d_S+s;
- d_NS[s*d_I+i] = t/d_I;
- d_OS[s*d_I+i] = t;
- }
- }
-
- generate_PS_PI();
- generate_TM();
-}
-
-
-//######################################################################
-//# generate the PS and PI tables for later use
-//######################################################################
-void fsm::generate_PS_PI()
-{
- d_PS.resize(d_I*d_S);
- d_PI.resize(d_I*d_S);
-
- for(int i=0;i<d_S;i++) {
- int j=0;
- for(int ii=0;ii<d_S;ii++) for(int jj=0;jj<d_I;jj++) {
- if(d_NS[ii*d_I+jj]!=i) continue;
- d_PS[i*d_I+j]=ii;
- d_PI[i*d_I+j]=jj;
- j++;
- }
- }
-}
-
-
-//######################################################################
-//# generate the termination matrices TMl and TMi for later use
-//######################################################################
-void fsm::generate_TM()
-{
- d_TMi.resize(d_S*d_S);
- d_TMl.resize(d_S*d_S);
-
- for(int i=0;i<d_S*d_S;i++) {
- d_TMi[i] = -1; // no meaning
- d_TMl[i] = d_S; //infinity: you need at most S-1 steps
- if (i/d_S == i%d_S)
- d_TMl[i] = 0;
- }
-
- for(int s=0;s<d_S;s++) {
- bool done = false;
- int attempts = 0;
- while (done == false && attempts < d_S-1) {
- done = find_es(s);
- attempts ++;
- }
- if (done == false)
- //throw std::runtime_error ("fsm::generate_TM(): FSM appears to be disconnected\n");
- printf("fsm::generate_TM(): FSM appears to be disconnected\n");
- }
-}
-
-
-// find a path from any state to the ending state "es"
-bool fsm::find_es(int es)
-{
- bool done = true;
- for(int s=0;s<d_S;s++) {
- if(d_TMl[s*d_S+es] < d_S)
- continue;
- int minl=d_S;
- int mini=-1;
- for(int i=0;i<d_I;i++) {
- if( 1 + d_TMl[d_NS[s*d_I+i]*d_S+es] < minl) {
- minl = 1 + d_TMl[d_NS[s*d_I+i]*d_S+es];
- mini = i;
- }
- }
- if (mini != -1) {
- d_TMl[s*d_S+es]=minl;
- d_TMi[s*d_S+es]=mini;
- }
- else
- done = false;
- }
- return done;
-}
-
-
-
-
-
-
-
-
-
-
-
-
+/* -*- c++ -*- */
+/*
+ * Copyright 2002 Free Software Foundation, Inc.
+ *
+ * This file is part of GNU Radio
+ *
+ * GNU Radio is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2, or (at your option)
+ * any later version.
+ *
+ * GNU Radio is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with GNU Radio; see the file COPYING. If not, write to
+ * the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
+ * Boston, MA 02111-1307, USA.
+ */
+
+#include <cstdio>
+#include <stdexcept>
+#include <cmath>
+#include "base.h"
+#include "fsm.h"
+
+
+fsm::fsm()
+{
+ d_I=0;
+ d_S=0;
+ d_O=0;
+ d_NS.resize(0);
+ d_OS.resize(0);
+ d_PS.resize(0);
+ d_PI.resize(0);
+ d_TMi.resize(0);
+ d_TMl.resize(0);
+}
+
+fsm::fsm(const fsm &FSM)
+{
+ d_I=FSM.I();
+ d_S=FSM.S();
+ d_O=FSM.O();
+ d_NS=FSM.NS();
+ d_OS=FSM.OS();
+ d_PS=FSM.PS();
+ d_PI=FSM.PI();
+ d_TMi=FSM.TMi();
+ d_TMl=FSM.TMl();
+}
+
+fsm::fsm(int I, int S, int O, const std::vector<int> &NS, const std::vector<int> &OS)
+{
+ d_I=I;
+ d_S=S;
+ d_O=O;
+ d_NS=NS;
+ d_OS=OS;
+
+ generate_PS_PI();
+ generate_TM();
+}
+
+//######################################################################
+//# Read an FSM specification from a file.
+//# Format (hopefully will become more flexible in the future...):
+//# I S O (in the first line)
+//# blank line
+//# Next state matrix (S lines, each with I integers separated by spaces)
+//# blank line
+//# output symbol matrix (S lines, each with I integers separated by spaces)
+//# optional comments
+//######################################################################
+fsm::fsm(const char *name)
+{
+ FILE *fsmfile;
+
+ if((fsmfile=fopen(name,"r"))==NULL)
+ throw std::runtime_error ("fsm::fsm(const char *name): file open error\n");
+ //printf("file open error in fsm()\n");
+
+ fscanf(fsmfile,"%d %d %d\n",&d_I,&d_S,&d_O);
+ d_NS.resize(d_I*d_S);
+ d_OS.resize(d_I*d_S);
+
+ for(int i=0;i<d_S;i++) {
+ for(int j=0;j<d_I;j++) fscanf(fsmfile,"%d",&(d_NS[i*d_I+j]));
+ }
+ for(int i=0;i<d_S;i++) {
+ for(int j=0;j<d_I;j++) fscanf(fsmfile,"%d",&(d_OS[i*d_I+j]));
+ }
+
+ generate_PS_PI();
+ generate_TM();
+}
+
+
+
+
+//######################################################################
+//# Automatically generate the FSM from the generator matrix
+//# of a (n,k) binary convolutional code
+//######################################################################
+fsm::fsm(int k, int n, const std::vector<int> &G)
+{
+
+ // calculate maximum memory requirements for each input stream
+ std::vector<int> max_mem_x(k,-1);
+ int max_mem = -1;
+ for(int i=0;i<k;i++) {
+ for(int j=0;j<n;j++) {
+ int mem = -1;
+ if(G[i*n+j]!=0)
+ mem=(int)(log(G[i*n+j])/log(2.0));
+ if(mem>max_mem_x[i])
+ max_mem_x[i]=mem;
+ if(mem>max_mem)
+ max_mem=mem;
+ }
+ }
+
+//printf("max_mem_x\n");
+//for(int j=0;j<max_mem_x.size();j++) printf("%d ",max_mem_x[j]); printf("\n");
+
+ // calculate total memory requirements to set S
+ int sum_max_mem = 0;
+ for(int i=0;i<k;i++)
+ sum_max_mem += max_mem_x[i];
+
+//printf("sum_max_mem = %d\n",sum_max_mem);
+
+ d_I=1<<k;
+ d_S=1<<sum_max_mem;
+ d_O=1<<n;
+
+ // binary representation of the G matrix
+ std::vector<std::vector<int> > Gb(k*n);
+ for(int j=0;j<k*n;j++) {
+ Gb[j].resize(max_mem+1);
+ dec2base(G[j],2,Gb[j]);
+//printf("Gb\n");
+//for(int m=0;m<Gb[j].size();m++) printf("%d ",Gb[j][m]); printf("\n");
+ }
+
+ // alphabet size of each shift register
+ std::vector<int> bases_x(k);
+ for(int j=0;j<k ;j++)
+ bases_x[j] = 1 << max_mem_x[j];
+//printf("bases_x\n");
+//for(int j=0;j<max_mem_x.size();j++) printf("%d ",max_mem_x[j]); printf("\n");
+
+ d_NS.resize(d_I*d_S);
+ d_OS.resize(d_I*d_S);
+
+ std::vector<int> sx(k);
+ std::vector<int> nsx(k);
+ std::vector<int> tx(k);
+ std::vector<std::vector<int> > tb(k);
+ for(int j=0;j<k;j++)
+ tb[j].resize(max_mem+1);
+ std::vector<int> inb(k);
+ std::vector<int> outb(n);
+
+
+ for(int s=0;s<d_S;s++) {
+ dec2bases(s,bases_x,sx); // split s into k values, each representing on of the k shift registers
+//printf("state = %d \nstates = ",s);
+//for(int j=0;j<sx.size();j++) printf("%d ",sx[j]); printf("\n");
+ for(int i=0;i<d_I;i++) {
+ dec2base(i,2,inb); // input in binary
+//printf("input = %d \ninputs = ",i);
+//for(int j=0;j<inb.size();j++) printf("%d ",inb[j]); printf("\n");
+
+ // evaluate next state
+ for(int j=0;j<k;j++)
+ nsx[j] = (inb[j]*bases_x[j]+sx[j])/2; // next state (for each shift register) MSB first
+ d_NS[s*d_I+i]=bases2dec(nsx,bases_x); // collect all values into the new state
+
+ // evaluate transitions
+ for(int j=0;j<k;j++)
+ tx[j] = inb[j]*bases_x[j]+sx[j]; // transition (for each shift register)MSB first
+ for(int j=0;j<k;j++) {
+ dec2base(tx[j],2,tb[j]); // transition in binary
+//printf("transition = %d \ntransitions = ",tx[j]);
+//for(int m=0;m<tb[j].size();m++) printf("%d ",tb[j][m]); printf("\n");
+ }
+
+ // evaluate outputs
+ for(int nn=0;nn<n;nn++) {
+ outb[nn] = 0;
+ for(int j=0;j<k;j++) {
+ for(int m=0;m<max_mem+1;m++)
+ outb[nn] = (outb[nn] + Gb[j*n+nn][m]*tb[j][m]) % 2; // careful: polynomial 1+D ir represented as 110, not as 011
+//printf("output %d equals %d\n",nn,outb[nn]);
+ }
+ }
+ d_OS[s*d_I+i] = base2dec(outb,2);
+ }
+ }
+
+ generate_PS_PI();
+ generate_TM();
+}
+
+
+
+
+//######################################################################
+//# Automatically generate an FSM specification describing the
+//# ISI for a channel
+//# of length ch_length and a modulation of size mod_size
+//######################################################################
+fsm::fsm(int mod_size, int ch_length)
+{
+ d_I=mod_size;
+ d_S=(int) (pow(1.0*d_I,1.0*ch_length-1)+0.5);
+ d_O=d_S*d_I;
+
+ d_NS.resize(d_I*d_S);
+ d_OS.resize(d_I*d_S);
+
+ for(int s=0;s<d_S;s++) {
+ for(int i=0;i<d_I;i++) {
+ int t=i*d_S+s;
+ d_NS[s*d_I+i] = t/d_I;
+ d_OS[s*d_I+i] = t;
+ }
+ }
+
+ generate_PS_PI();
+ generate_TM();
+}
+
+
+//######################################################################
+//# generate the PS and PI tables for later use
+//######################################################################
+void fsm::generate_PS_PI()
+{
+ d_PS.resize(d_I*d_S);
+ d_PI.resize(d_I*d_S);
+
+ for(int i=0;i<d_S;i++) {
+ int j=0;
+ for(int ii=0;ii<d_S;ii++) for(int jj=0;jj<d_I;jj++) {
+ if(d_NS[ii*d_I+jj]!=i) continue;
+ d_PS[i*d_I+j]=ii;
+ d_PI[i*d_I+j]=jj;
+ j++;
+ }
+ }
+}
+
+
+//######################################################################
+//# generate the termination matrices TMl and TMi for later use
+//######################################################################
+void fsm::generate_TM()
+{
+ d_TMi.resize(d_S*d_S);
+ d_TMl.resize(d_S*d_S);
+
+ for(int i=0;i<d_S*d_S;i++) {
+ d_TMi[i] = -1; // no meaning
+ d_TMl[i] = d_S; //infinity: you need at most S-1 steps
+ if (i/d_S == i%d_S)
+ d_TMl[i] = 0;
+ }
+
+ for(int s=0;s<d_S;s++) {
+ bool done = false;
+ int attempts = 0;
+ while (done == false && attempts < d_S-1) {
+ done = find_es(s);
+ attempts ++;
+ }
+ if (done == false)
+ //throw std::runtime_error ("fsm::generate_TM(): FSM appears to be disconnected\n");
+ printf("fsm::generate_TM(): FSM appears to be disconnected\n");
+ }
+}
+
+
+// find a path from any state to the ending state "es"
+bool fsm::find_es(int es)
+{
+ bool done = true;
+ for(int s=0;s<d_S;s++) {
+ if(d_TMl[s*d_S+es] < d_S)
+ continue;
+ int minl=d_S;
+ int mini=-1;
+ for(int i=0;i<d_I;i++) {
+ if( 1 + d_TMl[d_NS[s*d_I+i]*d_S+es] < minl) {
+ minl = 1 + d_TMl[d_NS[s*d_I+i]*d_S+es];
+ mini = i;
+ }
+ }
+ if (mini != -1) {
+ d_TMl[s*d_S+es]=minl;
+ d_TMi[s*d_S+es]=mini;
+ }
+ else
+ done = false;
+ }
+ return done;
+}
+
+
+
+
+
+
+
+
+
+
+
+