summaryrefslogtreecommitdiff
path: root/gr-trellis/doc/test_tcm.py
diff options
context:
space:
mode:
Diffstat (limited to 'gr-trellis/doc/test_tcm.py')
-rw-r--r--gr-trellis/doc/test_tcm.py23
1 files changed, 13 insertions, 10 deletions
diff --git a/gr-trellis/doc/test_tcm.py b/gr-trellis/doc/test_tcm.py
index 61ab00f1c8..e9a0ba59eb 100644
--- a/gr-trellis/doc/test_tcm.py
+++ b/gr-trellis/doc/test_tcm.py
@@ -1,5 +1,8 @@
#!/usr/bin/env python
+from __future__ import print_function
+from __future__ import division
+from __future__ import unicode_literals
from gnuradio import gr
from gnuradio import audio
from gnuradio import trellis, digital, blocks
@@ -20,14 +23,14 @@ def run_test (f,Kb,bitspersymbol,K,dimensionality,constellation,N0,seed):
# TX
src = blocks.lfsr_32k_source_s()
- src_head = blocks.head (gr.sizeof_short,Kb/16) # packet size in shorts
+ src_head = blocks.head (gr.sizeof_short,Kb / 16) # packet size in shorts
s2fsmi = blocks.packed_to_unpacked_ss(bitspersymbol,gr.GR_MSB_FIRST) # unpack shorts to symbols compatible with the FSM input cardinality
enc = trellis.encoder_ss(f,0) # initial state = 0
mod = digital.chunks_to_symbols_sf(constellation,dimensionality)
# CHANNEL
add = blocks.add_ff()
- noise = analog.noise_source_f(analog.GR_GAUSSIAN,math.sqrt(N0/2),seed)
+ noise = analog.noise_source_f(analog.GR_GAUSSIAN,math.sqrt(N0 / 2),seed)
# RX
metrics = trellis.metrics_f(f.O(),dimensionality,constellation,digital.TRELLIS_EUCLIDEAN) # data preprocessing to generate metrics for Viterbi
@@ -67,31 +70,31 @@ def main(args):
# system parameters
f=trellis.fsm(fname) # get the FSM specification from a file
Kb=1024*16 # packet size in bits (make it multiple of 16 so it can be packed in a short)
- bitspersymbol = int(round(math.log(f.I())/math.log(2))) # bits per FSM input symbol
- K=Kb/bitspersymbol # packet size in trellis steps
+ bitspersymbol = int(round(math.log(f.I()) / math.log(2))) # bits per FSM input symbol
+ K=Kb / bitspersymbol # packet size in trellis steps
modulation = fsm_utils.psk4 # see fsm_utlis.py for available predefined modulations
dimensionality = modulation[0]
constellation = modulation[1]
- if len(constellation)/dimensionality != f.O():
+ if len(constellation) / dimensionality != f.O():
sys.stderr.write ('Incompatible FSM output cardinality and modulation size.\n')
sys.exit (1)
# calculate average symbol energy
Es = 0
for i in range(len(constellation)):
Es = Es + constellation[i]**2
- Es = Es / (len(constellation)/dimensionality)
- N0=Es/pow(10.0,esn0_db/10.0); # noise variance
+ Es = Es / (old_div(len(constellation,dimensionality)))
+ N0=Es / pow(10.0,old_div(esn0_db,10.0)); # noise variance
tot_s=0
terr_s=0
for i in range(rep):
- (s,e)=run_test(f,Kb,bitspersymbol,K,dimensionality,constellation,N0,-long(666+i)) # run experiment with different seed to get different noise realizations
+ (s,e)=run_test(f,Kb,bitspersymbol,K,dimensionality,constellation,N0,-int(666+i)) # run experiment with different seed to get different noise realizations
tot_s=tot_s+s
terr_s=terr_s+e
if (i%100==0):
- print i,s,e,tot_s,terr_s, '%e' % ((1.0*terr_s)/tot_s)
+ print(i,s,e,tot_s,terr_s, '%e' % ((1.0*terr_s) / tot_s))
# estimate of the (short) error rate
- print tot_s,terr_s, '%e' % ((1.0*terr_s)/tot_s)
+ print(tot_s,terr_s, '%e' % ((1.0*terr_s) / tot_s))
if __name__ == '__main__':