diff options
Diffstat (limited to 'gr-fft/include/gnuradio/fft/fft_vcc.h')
-rw-r--r-- | gr-fft/include/gnuradio/fft/fft_vcc.h | 97 |
1 files changed, 49 insertions, 48 deletions
diff --git a/gr-fft/include/gnuradio/fft/fft_vcc.h b/gr-fft/include/gnuradio/fft/fft_vcc.h index 03e82a9989..a10398465e 100644 --- a/gr-fft/include/gnuradio/fft/fft_vcc.h +++ b/gr-fft/include/gnuradio/fft/fft_vcc.h @@ -27,60 +27,61 @@ #include <gnuradio/sync_block.h> namespace gr { - namespace fft { +namespace fft { - /*! - * \brief Compute forward or reverse FFT. complex vector in / complex vector out. - * \ingroup fourier_analysis_blk - * - * The FFT operation is defined for a vector \f$x\f$ with \f$N\f$ uniformly - * sampled points by - * - * \f[ X(a) = \sum_{k=0}^{N-1} x(a) \cdot e^{-j 2\pi k a / N} \f] - * - * \f$ X = FFT\{x\} \f$ is the the FFT transform of \f$x(a)\f$, \f$j\f$ is - * the imaginary unit, \f$k\f$ and \f$a\f$ range from \f$0\f$ to \f$N-1\f$. - * - * The IFFT operation is defined for a vector \f$y\f$ with \f$N\f$ - * uniformly sampled points by - * - * \f[ Y(b) = \sum_{k=0}^{N-1} y(b) \cdot e^{j 2\pi k b / N} \f] - * - * \f$Y = IFFT\{y\}\f$ is the the inverse FFT transform of \f$y(b)\f$, - * \f$j\f$ is the imaginary unit, \f$k\f$ and \f$b\f$ range from \f$0\f$ to - * \f$N-1\f$. - * - * \b Note, that due to the underlying FFTW library, the output of a FFT - * followed by an IFFT (or the other way arround) will be scaled i.e. - * \f$FFT\{ \, IFFT\{x\} \,\} = N \cdot x \neq x\f$. - * - * \see http://www.fftw.org/faq/section3.html#whyscaled +/*! + * \brief Compute forward or reverse FFT. complex vector in / complex vector out. + * \ingroup fourier_analysis_blk + * + * The FFT operation is defined for a vector \f$x\f$ with \f$N\f$ uniformly + * sampled points by + * + * \f[ X(a) = \sum_{k=0}^{N-1} x(a) \cdot e^{-j 2\pi k a / N} \f] + * + * \f$ X = FFT\{x\} \f$ is the the FFT transform of \f$x(a)\f$, \f$j\f$ is + * the imaginary unit, \f$k\f$ and \f$a\f$ range from \f$0\f$ to \f$N-1\f$. + * + * The IFFT operation is defined for a vector \f$y\f$ with \f$N\f$ + * uniformly sampled points by + * + * \f[ Y(b) = \sum_{k=0}^{N-1} y(b) \cdot e^{j 2\pi k b / N} \f] + * + * \f$Y = IFFT\{y\}\f$ is the the inverse FFT transform of \f$y(b)\f$, + * \f$j\f$ is the imaginary unit, \f$k\f$ and \f$b\f$ range from \f$0\f$ to + * \f$N-1\f$. + * + * \b Note, that due to the underlying FFTW library, the output of a FFT + * followed by an IFFT (or the other way arround) will be scaled i.e. + * \f$FFT\{ \, IFFT\{x\} \,\} = N \cdot x \neq x\f$. + * + * \see http://www.fftw.org/faq/section3.html#whyscaled + */ +class FFT_API fft_vcc : virtual public sync_block +{ +public: + // gr::fft::fft_vcc::sptr + typedef boost::shared_ptr<fft_vcc> sptr; + /*! \brief + * \param[in] fft_size N. + * \param[in] forward True performs FFT, False performs IFFT. + * \param[in] window Window function to be used. + * \param[in] shift True moves DC carrier to the middle. + * \param[in] nthreads Number of underlying threads. */ - class FFT_API fft_vcc : virtual public sync_block - { - public: - - // gr::fft::fft_vcc::sptr - typedef boost::shared_ptr<fft_vcc> sptr; - /*! \brief - * \param[in] fft_size N. - * \param[in] forward True performs FFT, False performs IFFT. - * \param[in] window Window function to be used. - * \param[in] shift True moves DC carrier to the middle. - * \param[in] nthreads Number of underlying threads. - */ - static sptr make(int fft_size, bool forward, - const std::vector<float> &window, - bool shift=false, int nthreads=1); + static sptr make(int fft_size, + bool forward, + const std::vector<float>& window, + bool shift = false, + int nthreads = 1); - virtual void set_nthreads(int n) = 0; + virtual void set_nthreads(int n) = 0; - virtual int nthreads() const = 0; + virtual int nthreads() const = 0; - virtual bool set_window(const std::vector<float> &window) = 0; - }; + virtual bool set_window(const std::vector<float>& window) = 0; +}; - } /* namespace fft */ +} /* namespace fft */ } /* namespace gr */ #endif /* INCLUDED_FFT_FFT_VCC_H */ |