summaryrefslogtreecommitdiff
path: root/gr-fec/python/fec/polar/testbed.py
diff options
context:
space:
mode:
Diffstat (limited to 'gr-fec/python/fec/polar/testbed.py')
-rwxr-xr-xgr-fec/python/fec/polar/testbed.py208
1 files changed, 202 insertions, 6 deletions
diff --git a/gr-fec/python/fec/polar/testbed.py b/gr-fec/python/fec/polar/testbed.py
index c35b62099c..d60c83e776 100755
--- a/gr-fec/python/fec/polar/testbed.py
+++ b/gr-fec/python/fec/polar/testbed.py
@@ -18,9 +18,11 @@
# Boston, MA 02110-1301, USA.
#
-import numpy as np
+
from encoder import PolarEncoder
from decoder import PolarDecoder
+import channel_construction as cc
+from helper_functions import *
import matplotlib.pyplot as plt
@@ -28,7 +30,9 @@ import matplotlib.pyplot as plt
def get_frozen_bit_position():
# frozenbitposition = np.array((0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 16, 17, 18, 20, 24), dtype=int)
# frozenbitposition = np.array((0, 1, 2, 3, 4, 5, 8, 9), dtype=int)
- frozenbitposition = np.load('frozen_bit_positions_n256_k128_p0.11.npy').flatten()
+ m = 256
+ n_frozen = m // 2
+ frozenbitposition = cc.get_frozen_bit_indices_from_z_parameters(cc.bhattacharyya_bounds(0.0, m), n_frozen)
print(frozenbitposition)
return frozenbitposition
@@ -140,12 +144,185 @@ def channel_analysis():
good_indices *= 2000
good_indices += 4000
-
plt.plot(channel_counter)
plt.plot(good_indices)
plt.show()
+
+def merge_first_stage(init_mask):
+ merged_frozen_mask = []
+ for e in range(0, len(init_mask), 2):
+ v = [init_mask[e]['value'][0], init_mask[e + 1]['value'][0]]
+ s = init_mask[e]['size'] * 2
+ if init_mask[e]['type'] == init_mask[e + 1]['type']:
+ t = init_mask[e]['type']
+ merged_frozen_mask.append({'value': v, 'type': t, 'size': s})
+ else:
+ t = 'RPT'
+ merged_frozen_mask.append({'value': v, 'type': t, 'size': s})
+ return merged_frozen_mask
+
+
+def merge_second_stage(init_mask):
+ merged_frozen_mask = []
+ for e in range(0, len(init_mask), 2):
+ if init_mask[e]['type'] == init_mask[e + 1]['type']:
+ t = init_mask[e]['type']
+ v = init_mask[e]['value']
+ v.extend(init_mask[e + 1]['value'])
+ s = init_mask[e]['size'] * 2
+ merged_frozen_mask.append({'value': v, 'type': t, 'size': s})
+ elif init_mask[e]['type'] == 'ZERO' and init_mask[e + 1]['type'] == 'RPT':
+ t = init_mask[e + 1]['type']
+ v = init_mask[e]['value']
+ v.extend(init_mask[e + 1]['value'])
+ s = init_mask[e]['size'] * 2
+ merged_frozen_mask.append({'value': v, 'type': t, 'size': s})
+ elif init_mask[e]['type'] == 'RPT' and init_mask[e + 1]['type'] == 'ONE':
+ t = 'SPC'
+ v = init_mask[e]['value']
+ v.extend(init_mask[e + 1]['value'])
+ s = init_mask[e]['size'] * 2
+ merged_frozen_mask.append({'value': v, 'type': t, 'size': s})
+ else:
+ merged_frozen_mask.append(init_mask[e])
+ merged_frozen_mask.append(init_mask[e + 1])
+ return merged_frozen_mask
+
+
+def merge_stage_n(init_mask):
+ merged_frozen_mask = []
+ n_elems = len(init_mask) - (len(init_mask) % 2)
+ for e in range(0, n_elems, 2):
+ if init_mask[e]['size'] == init_mask[e + 1]['size']:
+ if (init_mask[e]['type'] == 'ZERO' or init_mask[e]['type'] == 'ONE') and init_mask[e]['type'] == init_mask[e + 1]['type']:
+ t = init_mask[e]['type']
+ v = init_mask[e]['value']
+ v.extend(init_mask[e + 1]['value'])
+ s = init_mask[e]['size'] * 2
+ merged_frozen_mask.append({'value': v, 'type': t, 'size': s})
+ elif init_mask[e]['type'] == 'ZERO' and init_mask[e + 1]['type'] == 'RPT':
+ t = init_mask[e + 1]['type']
+ v = init_mask[e]['value']
+ v.extend(init_mask[e + 1]['value'])
+ s = init_mask[e]['size'] * 2
+ merged_frozen_mask.append({'value': v, 'type': t, 'size': s})
+ elif init_mask[e]['type'] == 'SPC' and init_mask[e + 1]['type'] == 'ONE':
+ t = init_mask[e]['type']
+ v = init_mask[e]['value']
+ v.extend(init_mask[e + 1]['value'])
+ s = init_mask[e]['size'] * 2
+ merged_frozen_mask.append({'value': v, 'type': t, 'size': s})
+ else:
+ merged_frozen_mask.append(init_mask[e])
+ merged_frozen_mask.append(init_mask[e + 1])
+ else:
+ merged_frozen_mask.append(init_mask[e])
+ merged_frozen_mask.append(init_mask[e + 1])
+ if n_elems < len(init_mask):
+ merged_frozen_mask.append(init_mask[-1])
+ return merged_frozen_mask
+
+
+def print_decode_subframes(subframes):
+ for e in subframes:
+ print(e)
+
+
+def find_decoder_subframes(frozen_mask):
+ stages = power_of_2_int(len(frozen_mask))
+ block_size = 2 ** stages
+
+ lock_mask = np.zeros(block_size, dtype=int)
+ sub_mask = []
+
+ for e in frozen_mask:
+ if e == 1:
+ sub_mask.append(0)
+ else:
+ sub_mask.append(1)
+ sub_mask = np.array(sub_mask, dtype=int)
+
+ for s in range(0, stages):
+ stage_size = 2 ** s
+ mask = np.reshape(sub_mask, (-1, stage_size))
+ lock = np.reshape(lock_mask, (-1, stage_size))
+ for p in range(0, (block_size // stage_size) - 1, 2):
+ l0 = lock[p]
+ l1 = lock[p + 1]
+ first = mask[p]
+ second = mask[p + 1]
+ print(l0, l1)
+ print(first, second)
+ if np.all(l0 == l1):
+ for eq in range(2):
+ if np.all(first == eq) and np.all(second == eq):
+ mask[p].fill(eq)
+ mask[p + 1].fill(eq)
+ lock[p].fill(s)
+ lock[p + 1].fill(s)
+
+ if np.all(first == 0) and np.all(second == 2):
+ mask[p].fill(2)
+ mask[p + 1].fill(2)
+ lock[p].fill(s)
+ lock[p + 1].fill(s)
+
+ if np.all(first == 3) and np.all(second == 1):
+ mask[p].fill(3)
+ mask[p + 1].fill(3)
+ lock[p].fill(s)
+ lock[p + 1].fill(s)
+
+ if s == 0 and np.all(first == 0) and np.all(second == 1):
+ mask[p].fill(2)
+ mask[p + 1].fill(2)
+ lock[p].fill(s)
+ lock[p + 1].fill(s)
+
+ if s == 1 and np.all(first == 2) and np.all(second == 1):
+ mask[p].fill(3)
+ mask[p + 1].fill(3)
+ lock[p].fill(s)
+ lock[p + 1].fill(s)
+
+ sub_mask = mask.flatten()
+ lock_mask = lock.flatten()
+
+ words = {0: 'ZERO', 1: 'ONE', 2: 'RPT', 3: 'SPC'}
+ ll = lock_mask[0]
+ sub_t = sub_mask[0]
+ for i in range(len(frozen_mask)):
+ v = frozen_mask[i]
+ t = words[sub_mask[i]]
+ l = lock_mask[i]
+ # if i % 8 == 0:
+ # print
+ if not l == ll or not sub_mask[i] == sub_t:
+ print('--------------------------')
+ ll = l
+ sub_t = sub_mask[i]
+ print('{0:4} lock {1:4} value: {2} in sub {3}'.format(i, 2 ** (l + 1), v, t))
+
+
+def load_file(filename):
+ z_params = []
+ with open(filename, 'r') as f:
+ for line in f:
+ if 'Bhattacharyya:' in line:
+ l = line.split(' ')
+ l = l[10:-2]
+ l = l[0][:-1]
+ l = float(l)
+ z_params.append(l)
+ return np.array(z_params)
+
+
def main():
+ n = 8
+ m = 2 ** n
+ k = m // 2
+ n_frozen = n - k
# n = 16
# k = 8
# frozenbits = np.zeros(n - k)
@@ -153,12 +330,31 @@ def main():
# frozenbitposition = np.array((0, 1, 2, 3, 4, 5, 8, 9), dtype=int)
# print frozenbitposition
- test_enc_dec_chain()
-
+ # test_enc_dec_chain()
# test_1024_rate_1_code()
-
# channel_analysis()
+ frozen_indices = cc.get_bec_frozen_indices(m, n_frozen, 0.11)
+ frozen_mask = cc.get_frozen_bit_mask(frozen_indices, m)
+ find_decoder_subframes(frozen_mask)
+
+ frozen_mask = np.zeros(m, dtype=int)
+ frozen_mask[frozen_indices] = 1
+
+ # filename = 'channel_z-parameters.txt'
+ # ido = load_file(filename)
+ # ido_frozen = cc.get_frozen_bit_indices_from_z_parameters(ido, k)
+ # ido_mask = np.zeros(m, dtype=int)
+ # ido_mask[ido_frozen] = 1
+ #
+ #
+ # plt.plot(ido_mask)
+ # plt.plot(frozen_mask)
+ # for i in range(m):
+ # if not ido_mask[i] == frozen_mask[i]:
+ # plt.axvline(i, color='r')
+ # plt.show()
+
if __name__ == '__main__':
main() \ No newline at end of file