summaryrefslogtreecommitdiff
path: root/gr-fec/python/fec/polar/helper_functions.py
diff options
context:
space:
mode:
Diffstat (limited to 'gr-fec/python/fec/polar/helper_functions.py')
-rw-r--r--gr-fec/python/fec/polar/helper_functions.py169
1 files changed, 169 insertions, 0 deletions
diff --git a/gr-fec/python/fec/polar/helper_functions.py b/gr-fec/python/fec/polar/helper_functions.py
new file mode 100644
index 0000000000..ca66bf4a50
--- /dev/null
+++ b/gr-fec/python/fec/polar/helper_functions.py
@@ -0,0 +1,169 @@
+#!/usr/bin/env python
+#
+# Copyright 2015 Free Software Foundation, Inc.
+#
+# GNU Radio is free software; you can redistribute it and/or modify
+# it under the terms of the GNU General Public License as published by
+# the Free Software Foundation; either version 3, or (at your option)
+# any later version.
+#
+# GNU Radio is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+# GNU General Public License for more details.
+#
+# You should have received a copy of the GNU General Public License
+# along with GNU Radio; see the file COPYING. If not, write to
+# the Free Software Foundation, Inc., 51 Franklin Street,
+# Boston, MA 02110-1301, USA.
+#
+
+import numpy as np
+import time, sys
+import copy
+
+
+def power_of_2_int(num):
+ return int(np.log2(num))
+
+
+def is_power_of_two(num):
+ if type(num) != int:
+ return False # make sure we only compute integers.
+ return num != 0 and ((num & (num - 1)) == 0)
+
+
+def bit_reverse(value, n):
+ # is this really missing in NumPy???
+ seq = np.int(value)
+ rev = np.int(0)
+ rmask = np.int(1)
+ lmask = np.int(2 ** (n - 1))
+ for i in range(n // 2):
+ shiftval = n - 1 - (i * 2)
+ rshift = np.left_shift(np.bitwise_and(seq, rmask), shiftval)
+ lshift = np.right_shift(np.bitwise_and(seq, lmask), shiftval)
+ rev = np.bitwise_or(rev, rshift)
+ rev = np.bitwise_or(rev, lshift)
+ rmask = np.left_shift(rmask, 1)
+ lmask = np.right_shift(lmask, 1)
+ if not n % 2 == 0:
+ rev = np.bitwise_or(rev, np.bitwise_and(seq, rmask))
+ return rev
+
+
+def bit_reverse_vector(vec, n):
+ return np.array([bit_reverse(e, n) for e in vec], dtype=vec.dtype)
+
+
+def get_Bn(n):
+ # this is a bit reversal matrix.
+ lw = power_of_2_int(n) # number of used bits
+ indexes = [bit_reverse(i, lw) for i in range(n)]
+ Bn = np.zeros((n, n), type(n))
+ for i, index in enumerate(indexes):
+ Bn[i][index] = 1
+ return Bn
+
+
+def get_Fn(n):
+ # this matrix defines the actual channel combining.
+ if n == 1:
+ return np.array([1, ])
+ nump = power_of_2_int(n) - 1 # number of Kronecker products to calculate
+ F2 = np.array([[1, 0], [1, 1]], np.int)
+ Fn = F2
+ for i in range(nump):
+ Fn = np.kron(Fn, F2)
+ return Fn
+
+
+def get_Gn(n):
+ # this matrix is called generator matrix
+ if not is_power_of_two(n):
+ print "invalid input"
+ return None
+ if n == 1:
+ return np.array([1, ])
+ Bn = get_Bn(n)
+ Fn = get_Fn(n)
+ Gn = np.dot(Bn, Fn)
+ return Gn
+
+
+def unpack_byte(byte, nactive):
+ if np.amin(byte) < 0 or np.amax(byte) > 255:
+ return None
+ if not byte.dtype == np.uint8:
+ byte = byte.astype(np.uint8)
+ if nactive == 0:
+ return np.array([], dtype=np.uint8)
+ return np.unpackbits(byte)[-nactive:]
+
+
+def pack_byte(bits):
+ if len(bits) == 0:
+ return 0
+ if np.amin(bits) < 0 or np.amax(bits) > 1: # only '1' and '0' in bits array allowed!
+ return None
+ bits = np.concatenate((np.zeros(8 - len(bits), dtype=np.uint8), bits))
+ res = np.packbits(bits)[0]
+ return res
+
+
+def show_progress_bar(ndone, ntotal):
+ nchars = 50
+
+ fract = (1. * ndone / ntotal)
+ percentage = 100. * fract
+ ndone_chars = int(nchars * fract)
+ nundone_chars = nchars - ndone_chars
+ sys.stdout.write('\r[{0}{1}] {2:5.2f}% ({3} / {4})'.format('=' * ndone_chars, ' ' * nundone_chars, percentage, ndone, ntotal))
+
+
+
+def mutual_information(w):
+ '''
+ calculate mutual information I(W)
+ I(W) = sum over y e Y ( sum over x e X ( ... ) )
+ .5 W(y|x) log frac { W(y|x) }{ .5 W(y|0) + .5 W(y|1) }
+ '''
+ ydim, xdim = np.shape(w)
+ i = 0.0
+ for y in range(ydim):
+ for x in range(xdim):
+ v = w[y][x] * np.log2(w[y][x] / (0.5 * w[y][0] + 0.5 * w[y][1]))
+ i += v
+ i /= 2.0
+ return i
+
+
+def bhattacharyya_parameter(w):
+ '''bhattacharyya parameter is a measure of similarity between two prob. distributions'''
+ # sum over all y e Y for sqrt( W(y|0) * W(y|1) )
+ dim = np.shape(w)
+ ydim = dim[0]
+ z = 0.0
+ for y in range(ydim):
+ z += np.sqrt(w[0, y] * w[1, y])
+ # need all
+ return z
+
+
+def main():
+ print 'helper functions'
+
+ for i in range(9):
+ print(i, 'is power of 2: ', is_power_of_two(i))
+ n = 6
+ m = 2 ** n
+
+
+ pos = np.arange(m)
+ rev_pos = bit_reverse_vector(pos, n)
+ print(pos)
+ print(rev_pos)
+
+
+if __name__ == '__main__':
+ main()