diff options
Diffstat (limited to 'gr-fec/lib/tpc_decoder.cc')
-rw-r--r-- | gr-fec/lib/tpc_decoder.cc | 894 |
1 files changed, 894 insertions, 0 deletions
diff --git a/gr-fec/lib/tpc_decoder.cc b/gr-fec/lib/tpc_decoder.cc new file mode 100644 index 0000000000..332bd9bdc8 --- /dev/null +++ b/gr-fec/lib/tpc_decoder.cc @@ -0,0 +1,894 @@ +#include <gnuradio/fec/tpc_decoder.h> +#include <gnuradio/fec/tpc_common.h> +#include <volk/volk.h> + +#include <math.h> +#include <boost/assign/list_of.hpp> +#include <sstream> +#include <stdio.h> +#include <vector> + +#include <algorithm> // for std::reverse +#include <string.h> // for memcpy + +#include <gnuradio/fec/maxstar.h> + +/** + * This code borrows from the CML library for the SISO Decode functionality, + * and for the RSC_Encode functionality. Please have a look @: + * https://code.google.com/p/iscml + * + */ + +namespace gr { + namespace fec { + +generic_decoder::sptr +tpc_decoder::make(std::vector<int> row_polys, std::vector<int> col_polys, int krow, int kcol, int bval, int qval, int max_iter, int decoder_type) +{ + return generic_decoder::sptr(new tpc_decoder(row_polys, col_polys, krow, kcol, bval, qval, max_iter, decoder_type)); +} + +tpc_decoder::tpc_decoder (std::vector<int> row_polys, std::vector<int> col_polys, int krow, int kcol, int bval, int qval, int max_iter, int decoder_type) + : generic_decoder("tpc_decoder"), d_rowpolys(row_polys), d_colpolys(col_polys), d_krow(krow), d_kcol(kcol), + d_bval(bval), d_qval(qval), d_max_iter(max_iter), d_decoder_type(decoder_type) +{ + // first we operate on data chunks of get_input_size() + // TODO: should we verify this and throw an error if it doesn't match? YES + // hwo do we do that? + + rowEncoder_K = ceil(log(d_rowpolys[0])/log(2)); // rowEncoder_K is the constraint length of the row encoder polynomial + rowEncoder_n = d_rowpolys.size(); + rowEncoder_m = rowEncoder_K - 1; + colEncoder_K = ceil(log(d_colpolys[0])/log(2)); // colEncoder_K is the constraint length of the col encoder polynomial + colEncoder_n = d_colpolys.size(); + colEncoder_m = colEncoder_K - 1; + + // calculate the input and output sizes + inputSize = ((d_krow+rowEncoder_m)*rowEncoder_n)*((d_kcol+colEncoder_m)*colEncoder_n) - d_bval; + outputSize = (d_krow*d_kcol - (d_bval+d_qval)); + + //DEBUG_PRINT("inputSize=%d outputSize=%d\n", inputSize, outputSize); + fp = fopen("c_decoder_output.txt", "w"); + + rowNumStates = 1 << (rowEncoder_m); // 2^(row_mm) + colNumStates = 1 << (colEncoder_m); // 2^(col_mm) + rowOutputs.resize(2, std::vector<int>(rowNumStates,0)); + rowNextStates.resize(2, std::vector<int>(rowNumStates,0)); + colOutputs.resize(2, std::vector<int>(colNumStates,0)); + colNextStates.resize(2, std::vector<int>(colNumStates,0));; + + // precalculate the state transition matrix for the row polynomial + tpc_common::precomputeStateTransitionMatrix_RSCPoly(rowNumStates, d_rowpolys, rowEncoder_K, rowEncoder_n, + rowOutputs, rowNextStates); + + // precalculate the state transition matrix for the column polynomial + tpc_common::precomputeStateTransitionMatrix_RSCPoly(colNumStates, d_colpolys, colEncoder_K, colEncoder_n, + colOutputs, colNextStates); + + codeword_M = d_kcol + colEncoder_K - 1; + codeword_N = d_krow + rowEncoder_K - 1; + + // pre-allocate memory we use for encoding + inputSizeWithPad = inputSize + d_bval; + + channel_llr.resize(codeword_M, std::vector<float>(codeword_N, 0)); + Z.resize(codeword_M, std::vector<float>(codeword_N, 0)); + extrinsic_info.resize(codeword_M*codeword_N, 0); + + input_u_rows.resize(d_krow, 0); + input_u_cols.resize(d_kcol, 0); + input_c_rows.resize(codeword_N, 0); + input_c_cols.resize(codeword_M, 0); + output_u_rows.resize(d_krow, 0); + output_u_cols.resize(d_kcol, 0); + output_c_rows.resize(codeword_N, 0); + + output_c_cols.resize(codeword_M*codeword_N, 0); + output_c_col_idx = 0; + + // setup the max_star function based on decoder type + switch(d_decoder_type) { + case 0: + max_star = &tpc_decoder::linear_log_map; + break; + case 1: + max_star = &tpc_decoder::max_log_map; + break; + case 2: + max_star = &tpc_decoder::constant_log_map; + break; + case 3: + max_star = &tpc_decoder::log_map_lut_correction; + break; + case 4: + max_star = &tpc_decoder::log_map_cfunction_correction; + break; + default: + max_star = &tpc_decoder::linear_log_map; + break; + } + + // declare the reverse sweep trellis + // the beta vector is logically layed out in memory as follows, assuming the + // following values (for educational purposes) + // defined: LL = 6, rowEncoder_K = 3, derived: mm_row=2, max_states_row=4, rowEncoder_n=1, num_symbols_row=2 + // state_idx + //------------------------------------------------------------------------- + // 0 B(0,0) <-- the calculated beta value at state=0, time=0 + // + // 1 B(0,1) + // + // 2 B(0,2) + // + // 3 B(0,3) + //------------------------------------------------------------------------- + //k(time) = 0 1 2 3 4 5 6 7 8 + // setup row siso decoder + mm_row = rowEncoder_K-1; // encoder memory + max_states_row = 1 << mm_row; // 2^mm_row + num_symbols_row = 1 << rowEncoder_n; // 2^rowEncoder_n + + beta_row.resize(input_u_rows.size()+rowEncoder_K, std::vector<float>(max_states_row, 0)); + // forward sweep trellis for current time instant only (t=k) + alpha_prime_row.resize(max_states_row, 0); + // forward sweep trellis for next time instant only (t=k+1) + alpha_row.resize(max_states_row, 0); + // likelihood vector that input_c[idx] corresponds to a symbol in the set of [0 ... num_symbols_row-1] + metric_c_row.resize(num_symbols_row, 0); + // temporary vector to store the appropriate indexes of input_c that we want to test the likelihood of + rec_array_row.resize(rowEncoder_n, 0); + // log-likelihood ratios of the coded bit being a 1 + num_llr_c_row.resize(rowEncoder_n, 0); + // log-likelihood ratios of the coded bit being a 0 + den_llr_c_row.resize(rowEncoder_n, 0); + + + // setup column siso decoder + mm_col = colEncoder_K-1; // encoder memory + max_states_col = 1 << mm_col; // 2^mm_col + num_symbols_col = 1 << colEncoder_n; // 2^colEncoder_n + beta_col.resize(input_u_cols.size()+colEncoder_K, std::vector<float>(max_states_col, 0)); + // forward sweep trellis for current time instant only (t=k) + alpha_prime_col.resize(max_states_col, 0); + // forward sweep trellis for next time instant only (t=k+1) + alpha_col.resize(max_states_col, 0); + // likelihood vector that input_c[idx] corresponds to a symbol in the set of [0 ... num_symbols_col-1] + metric_c_col.resize(num_symbols_col, 0); + // temporary vector to store the appropriate indexes of input_c that we want to test the likelihood of + rec_array_col.resize(colEncoder_n, 0); + // log-likelihood ratios of the coded bit being a 1 + num_llr_c_col.resize(colEncoder_n, 0); + // log-likelihood ratios of the coded bit being a 0 + den_llr_c_col.resize(colEncoder_n, 0); + + mInit = (d_bval+d_qval)/d_krow; // integer division + nInit = (d_bval+d_qval) - mInit*d_krow; + + numInitLoadIter = d_bval/codeword_N; + numInitRemaining = d_bval - codeword_N*numInitLoadIter; + +} + +int tpc_decoder::get_output_size() { + return outputSize; +} + +int tpc_decoder::get_input_size() { + return inputSize; +} + +// this code borrows heavily from CML library, please look @: +// http://code.google.com/p/iscml +// it has been refactored to work w/ gnuradio in C++ environment, +// as well as some comments being added to help understand +// exactly what is going on w/ the siso decoder +void tpc_decoder::siso_decode_row() { + + int LL, state, k, ii, symbol, mask; + float app_in, delta1, delta2; + LL = input_u_rows.size(); // code length + + // log-likelihood ratio of the uncoded bit being a 1 + float num_llr_u; + // log-likelihood ratio of the uncoded bit being a 0 + float den_llr_u; + + // initialize beta_row trellis + // this initialization is saying that the likelihood that the reverse sweep + // starts at state=0 is 100%, b/c state 1, 2, 3's likelihood's are basically -inf + // this implies that the forward trellis terminated at the 0 state +// for(state=1; state<max_states_row; state++) { +// beta_row[LL+rowEncoder_K-1][state] = -MAXLOG; +// } + // filling w/ 0xCCCC yields a value close to -MAXLOG, and memset is faster than for loops + memset(&beta_row[LL+rowEncoder_K-1][1], 0xCCCC, sizeof(float)*(max_states_row-1)); + + // initialize alpha_prime_row (current time instant), alpha_prime_row then gets updated + // by shifting in alpha_row at the end of each time instant of processing + // alpha_row needs to get initialized at the beginning of each processing loop, so we + // initialize alpha_row in the forward sweep processing loop + // the initialization below is saying that the likelihood of starting at state=0 is + // 100%, b/c state 1, 2, 3's likelihoods are basically -inf + // as with the beta_row array, this implies that the forward trellis started at state=0 +// for (state=1;state<max_states_row;state++) { +// alpha_prime_row[state] = -MAXLOG; +// } + memset(&alpha_prime_row[1], 0xCCCC, sizeof(float)*(max_states_row-1)); + + // compute the beta_row matrix first, which is the reverse sweep (hence we start at the last + // time instant-1 and work our way back to t=0). we start at last time instant-1 b/c + // we already filled in beta_row values for the last time instant, forcing the trellis to + // start at state=0 +// DEBUG_PRINT("LL=%d KK=%d mm=%d\n", LL, rowEncoder_K, mm_row); +// DEBUG_PRINT_F(fp, "LL=%d KK=%d mm=%d\n", LL, rowEncoder_K, mm_row); + for (k=(LL+(rowEncoder_K-1)-1); k>=0; k--) { + // TODO: figure out why this is needed? I'm still confused by this + if (k<LL) { + app_in = input_u_rows[k]; + } + else { + app_in = 0; + } + + // get the input associated w/ this time instant + memcpy(&rec_array_row[0], &input_c_rows[rowEncoder_n*k], sizeof(float)*rowEncoder_n); + +// DEBUG_PRINT("k=%d\n", k); +// DEBUG_PRINT_F(fp, "k=%d\n", k); +// +// DEBUG_PRINT("rec_array -->\n"); +// DEBUG_PRINT_FLOAT_ARRAY_AS_FLOAT(&rec_array_row[0], rec_array_row.size()); +// DEBUG_PRINT_F(fp, "rec_array -->\n"); +// DEBUG_PRINT_FLOAT_ARRAY_AS_FLOAT_F(fp, &rec_array_row[0], rec_array_row.size()); + + // for each input at this time instant, create a metric which + // represents the likelihood that this input corresponds to + // each of the possible symbols + for(symbol=0; symbol<num_symbols_row; symbol++) { + metric_c_row[symbol] = gamma(rec_array_row, symbol); + } + +// DEBUG_PRINT("metric_c -->\n"); +// DEBUG_PRINT_FLOAT_ARRAY_AS_FLOAT(&metric_c_row[0], metric_c_row.size()); +// DEBUG_PRINT_F(fp, "metric_c -->\n"); +// DEBUG_PRINT_FLOAT_ARRAY_AS_FLOAT_F(fp, &metric_c_row[0], metric_c_row.size()); + + // step through all states -- populating the beta_row values for each node + // in the trellis diagram as shown above w/ the maximum-likelihood + // of this current node coming from the previous node + for ( state=0; state< max_states_row; state++ ) { + // data 0 branch + delta1 = beta_row[k+1][rowNextStates[0][state]] + metric_c_row[rowOutputs[0][state]]; + // data 1 branch + delta2 = beta_row[k+1][rowNextStates[1][state]] + metric_c_row[rowOutputs[1][state]] + app_in; + // update beta_row + beta_row[k][state] = (*this.*max_star)(delta1, delta2); + +// DEBUG_PRINT("delta1=%f delta2=%f beta=%f\n", delta1, delta2, beta_row[k][state]); +// DEBUG_PRINT_F(fp, "delta1=%f delta2=%f beta=%f\n", delta1, delta2, beta_row[k][state]); + } + + // normalize beta_row + for (state=1;state<max_states_row;state++) { + beta_row[k][state] = beta_row[k][state] - beta_row[k][0]; + } + beta_row[k][0] = 0; + + } + + // compute the forward sweep (alpha_row values), and update the llr's + // notice that we start at time index=1, b/c time index=0 has already been + // initialized, and we are forcing the trellis to start from state=0 + for(k=1; k<LL+rowEncoder_K; k++) { + // initialize the llr's for the uncoded bits + num_llr_u = -MAXLOG; + den_llr_u = -MAXLOG; + + // intialize alpha_row +// for (state=0;state<max_states_row;state++) { +// alpha_row[state] = -MAXLOG; +// } + memset(&alpha_row[0], 0xCCCC, max_states_row*sizeof(float)); + + // assign inputs + if (k-1 < LL) + app_in = input_u_rows[k-1]; + else + app_in = 0; + + // initialize the llr's for the coded bits, and get the correct + // input bits for this time instant + for (ii=0;ii<rowEncoder_n;ii++) { + den_llr_c_row[ii] = -MAXLOG; + num_llr_c_row[ii] = -MAXLOG; + rec_array_row[ii] = input_c_rows[rowEncoder_n*(k-1)+ii]; + } + + // for each input at this time instant, create a metric which + // represents the likelihood that this input corresponds to + // each of the possible symbols + for(symbol=0; symbol<num_symbols_row; symbol++) { + metric_c_row[ii] = gamma(rec_array_row, symbol); + } + + // compute the alpha_row vector + // to understand the loop below, we need to think about the forward trellis. + // we know that any node, at any time instant in the trellis diagram can have + // multiple transitions into that node (i.e. any number of nodes in the + // previous time instance can transition into this current node, based on the + // polynomial). SO, in the loop below, delta1 represents the transition from + // the previous time instant for input (either 0 or 1) and the current state + // we are looping over, and delta2 represents a transition from the previous + // time instant to the current time instant for input (either 0 or 1) that + // we've already calculated. Essentially, b/c we can have multiple possible + // transitions into the current alpha_row node of interest, and we need to store the + // maximum likelihood of all those transitions, we keep delta2 as a previously + // calculated transition, and then take the max* of that, which can be thought + // of as a maximum (in the MAX-LOG-MAP approximation) + for ( state=0; state<max_states_row; state++ ) { + // Data 0 branch + delta1 = alpha_prime_row[state] + metric_c_row[rowOutputs[0][state]]; + delta2 = alpha_row[rowNextStates[0][state]]; + alpha_row[rowNextStates[0][state]] = (*this.*max_star)(delta1, delta2); + + // Data 1 branch + delta1 = alpha_prime_row[state] + metric_c_row[rowOutputs[1][state]] + app_in; + delta2 = alpha_row[rowNextStates[1][state]]; + alpha_row[rowNextStates[1][state]] = (*this.*max_star)(delta1, delta2); + } + + // compute the llr's + for (state=0;state<max_states_row;state++) { + // data 0 branch (departing) + delta1 = alpha_prime_row[state] + metric_c_row[rowOutputs[0][state]] + beta_row[k][rowNextStates[0][state]]; + // the information bit + delta2 = den_llr_u; + den_llr_u = (*this.*max_star)(delta1, delta2); + mask = 1<<(rowEncoder_n-1); + // go through all the code bits + for (ii=0;ii<rowEncoder_n;ii++) { + if ( rowOutputs[0][state]&mask ) { + // this code bit 1 + delta2 = num_llr_c_row[ii]; + num_llr_c_row[ii] = (*this.*max_star)(delta1, delta2); + } else { + // this code bit is 0 + delta2 = den_llr_c_row[ii]; + den_llr_c_row[ii] = (*this.*max_star)(delta1, delta2); + } + mask = mask>>1; + } + + // data 1 branch (departing) + delta1 = alpha_prime_row[state] + metric_c_row[rowOutputs[1][state]] + beta_row[k][rowNextStates[1][state]] + app_in; + // the information bit + delta2 = num_llr_u; + num_llr_u = (*this.*max_star)(delta1, delta2); + mask = 1<<(rowEncoder_n-1); + // go through all the code bits + for (ii=0;ii<rowEncoder_n;ii++) { + if ( rowOutputs[1][state]&mask ) { + // this code bit 1 + delta2 = num_llr_c_row[ii]; + num_llr_c_row[ii] = (*this.*max_star)(delta1, delta2); + } else { + // this code bit is 0 + delta2 = den_llr_c_row[ii]; + den_llr_c_row[ii] = (*this.*max_star)(delta1, delta2); + } + mask = mask>>1; + } + + // shift alpha_row back to alpha_prime_row + alpha_prime_row[state] = alpha_row[state] - alpha_row[0]; + } + + // assign uncoded outputs + if (k-1<LL) { + output_u_rows[k-1] = num_llr_u - den_llr_u; + } + // assign coded outputs + volk_32f_x2_subtract_32f(&output_c_rows[rowEncoder_n*(k-1)], &num_llr_c_row[0], &den_llr_c_row[0], rowEncoder_n); + } +} + +void tpc_decoder::siso_decode_col() { + + int LL, state, k, ii, symbol, mask; + float app_in, delta1, delta2; + LL = input_u_cols.size(); // code length + + // log-likelihood ratio of the uncoded bit being a 1 + float num_llr_u; + // log-likelihood ratio of the uncoded bit being a 0 + float den_llr_u; + + // initialize beta_col trellis + // this initialization is saying that the likelihood that the reverse sweep + // starts at state=0 is 100%, b/c state 1, 2, 3's likelihood's are basically -inf + // this implies that the forward trellis terminated at the 0 state +// for(state=1; state<max_states_col; state++) { +// beta_col[LL+colEncoder_K-1][state] = -MAXLOG; +// } + memset(&beta_col[LL+colEncoder_K-1][1], 0xCCCC, sizeof(float)*(max_states_col-1)); + + // initialize alpha_prime_col (current time instant), alpha_prime_col then gets updated + // by shifting in alpha_col at the end of each time instant of processing + // alpha_col needs to get initialized at the beginning of each processing loop, so we + // initialize alpha_col in the forward sweep processing loop + // the initialization below is saying that the likelihood of starting at state=0 is + // 100%, b/c state 1, 2, 3's likelihoods are basically -inf + // as with the beta_col array, this implies that the forward trellis started at state=0 +// for (state=1;state<max_states_col;state++) { +// alpha_prime_col[state] = -MAXLOG; +// } + memset(&alpha_prime_col[1], 0xCCCC, sizeof(float)*(max_states_col-1)); + + // compute the beta_col matrix first, which is the reverse sweep (hence we start at the last + // time instant-1 and work our way back to t=0). we start at last time instant-1 b/c + // we already filled in beta_col values for the last time instant, forcing the trellis to + // start at state=0 +// DEBUG_PRINT("LL=%d KK=%d mm=%d\n", LL, colEncoder_K, mm_col); +// DEBUG_PRINT_F(fp, "LL=%d KK=%d mm=%d\n", LL, colEncoder_K, mm_col); + for (k=(LL+(colEncoder_K-1)-1); k>=0; k--) { + // TODO: figure out why this is needed? I'm still confused by this + if (k<LL) { + app_in = input_u_cols[k]; + } + else { + app_in = 0; + } + + // get the input associated w/ this time instant + memcpy(&rec_array_col[0], &input_c_cols[colEncoder_n*k], sizeof(float)*colEncoder_n); + +// DEBUG_PRINT("k=%d\n", k); +// DEBUG_PRINT_F(fp, "k=%d\n", k); +// +// DEBUG_PRINT("rec_array -->\n"); +// DEBUG_PRINT_FLOAT_ARRAY_AS_FLOAT(&rec_array[0], rec_array_col.size()); +// DEBUG_PRINT_F(fp, "rec_array -->\n"); +// DEBUG_PRINT_FLOAT_ARRAY_AS_FLOAT_F(fp, &rec_array[0], rec_array_col.size()); + + // for each input at this time instant, create a metric which + // represents the likelihood that this input corresponds to + // each of the possible symbols + for(symbol=0; symbol<num_symbols_col; symbol++) { + metric_c_col[symbol] = gamma(rec_array_col, symbol); + } + +// DEBUG_PRINT("metric_c -->\n"); +// DEBUG_PRINT_FLOAT_ARRAY_AS_FLOAT(&metric_c_col[0], metric_c_col.size()); +// DEBUG_PRINT_F(fp, "metric_c -->\n"); +// DEBUG_PRINT_FLOAT_ARRAY_AS_FLOAT_F(fp, &metric_c_col[0], metric_c_col.size()); + + // step through all states -- populating the beta_col values for each node + // in the trellis diagram as shown above w/ the maximum-likelihood + // of this current node coming from the previous node + for ( state=0; state< max_states_col; state++ ) { + // data 0 branch + delta1 = beta_col[k+1][colNextStates[0][state]] + metric_c_col[colOutputs[0][state]]; + // data 1 branch + delta2 = beta_col[k+1][colNextStates[1][state]] + metric_c_col[colOutputs[1][state]] + app_in; + // update beta_col + beta_col[k][state] = (*this.*max_star)(delta1, delta2); + +// DEBUG_PRINT("delta1=%f delta2=%f beta=%f\n", delta1, delta2, beta_col[k][state]); +// DEBUG_PRINT_F(fp, "delta1=%f delta2=%f beta=%f\n", delta1, delta2, beta_col[k][state]); + } + + // normalize beta_col + for (state=1;state<max_states_col;state++) { + beta_col[k][state] = beta_col[k][state] - beta_col[k][0]; + } + beta_col[k][0] = 0; + + } + + // compute the forward sweep (alpha_col values), and update the llr's + // notice that we start at time index=1, b/c time index=0 has already been + // initialized, and we are forcing the trellis to start from state=0 + for(k=1; k<LL+colEncoder_K; k++) { + // initialize the llr's for the uncoded bits + num_llr_u = -MAXLOG; + den_llr_u = -MAXLOG; + + // intialize alpha_col +// for (state=0;state<max_states_col;state++) { +// alpha_col[state] = -MAXLOG; +// } + memset(&alpha_col[0], 0xCCCC, max_states_col*sizeof(float)); + + // assign inputs + if (k-1 < LL) + app_in = input_u_cols[k-1]; + else + app_in = 0; + + // initialize the llr's for the coded bits, and get the correct + // input bits for this time instant + for (ii=0;ii<colEncoder_n;ii++) { + den_llr_c_col[ii] = -MAXLOG; + num_llr_c_col[ii] = -MAXLOG; + rec_array_col[ii] = input_c_cols[colEncoder_n*(k-1)+ii]; + } + + // for each input at this time instant, create a metric which + // represents the likelihood that this input corresponds to + // each of the possible symbols + for(symbol=0; symbol<num_symbols_col; symbol++) { + metric_c_col[ii] = gamma(rec_array_col, symbol); + } + + // compute the alpha_col vector + // to understand the loop below, we need to think about the forward trellis. + // we know that any node, at any time instant in the trellis diagram can have + // multiple transitions into that node (i.e. any number of nodes in the + // previous time instance can transition into this current node, based on the + // polynomial). SO, in the loop below, delta1 represents the transition from + // the previous time instant for input (either 0 or 1) and the current state + // we are looping over, and delta2 represents a transition from the previous + // time instant to the current time instant for input (either 0 or 1) that + // we've already calculated. Essentially, b/c we can have multiple possible + // transitions into the current alpha_col node of interest, and we need to store the + // maximum likelihood of all those transitions, we keep delta2 as a previously + // calculated transition, and then take the max* of that, which can be thought + // of as a maximum (in the MAX-LOG-MAP approximation) + for ( state=0; state<max_states_col; state++ ) { + // Data 0 branch + delta1 = alpha_prime_col[state] + metric_c_col[colOutputs[0][state]]; + delta2 = alpha_col[colNextStates[0][state]]; + alpha_col[colNextStates[0][state]] = (*this.*max_star)(delta1, delta2); + + // Data 1 branch + delta1 = alpha_prime_col[state] + metric_c_col[colOutputs[1][state]] + app_in; + delta2 = alpha_col[colNextStates[1][state]]; + alpha_col[colNextStates[1][state]] = (*this.*max_star)(delta1, delta2); + } + + // compute the llr's + for (state=0;state<max_states_col;state++) { + // data 0 branch (departing) + delta1 = alpha_prime_col[state] + metric_c_col[colOutputs[0][state]] + beta_col[k][colNextStates[0][state]]; + // the information bit + delta2 = den_llr_u; + den_llr_u = (*this.*max_star)(delta1, delta2); + mask = 1<<(colEncoder_n-1); + // go through all the code bits + for (ii=0;ii<colEncoder_n;ii++) { + if ( colOutputs[0][state]&mask ) { + // this code bit 1 + delta2 = num_llr_c_col[ii]; + num_llr_c_col[ii] = (*this.*max_star)(delta1, delta2); + } else { + // this code bit is 0 + delta2 = den_llr_c_col[ii]; + den_llr_c_col[ii] = (*this.*max_star)(delta1, delta2); + } + mask = mask>>1; + } + + // data 1 branch (departing) + delta1 = alpha_prime_col[state] + metric_c_col[colOutputs[1][state]] + beta_col[k][colNextStates[1][state]] + app_in; + // the information bit + delta2 = num_llr_u; + num_llr_u = (*this.*max_star)(delta1, delta2); + mask = 1<<(colEncoder_n-1); + // go through all the code bits + for (ii=0;ii<colEncoder_n;ii++) { + if ( colOutputs[1][state]&mask ) { + // this code bit 1 + delta2 = num_llr_c_col[ii]; + num_llr_c_col[ii] = (*this.*max_star)(delta1, delta2); + } else { + // this code bit is 0 + delta2 = den_llr_c_col[ii]; + den_llr_c_col[ii] = (*this.*max_star)(delta1, delta2); + } + mask = mask>>1; + } + + // shift alpha_col back to alpha_prime_col + alpha_prime_col[state] = alpha_col[state] - alpha_col[0]; + } + + // assign uncoded outputs + if (k-1<LL) { + output_u_cols[k-1] = num_llr_u - den_llr_u; + } + // assign coded outputs + volk_32f_x2_subtract_32f(&output_c_cols[output_c_col_idx+rowEncoder_n*(k-1)], &num_llr_c_col[0], &den_llr_c_col[0], colEncoder_n); + } +} + +float tpc_decoder::linear_log_map(const float delta1, const float delta2) { + float diff; + + diff = delta2 - delta1; + + if ( diff > TJIAN ) + return( delta2 ); + else if ( diff < -TJIAN ) + return( delta1 ); + else if ( diff > 0 ) + return( delta2 + AJIAN*(diff-TJIAN) ); + else + return( delta1 - AJIAN*(diff+TJIAN) ); +} + +// MAX-LOG-MAP approximation +float tpc_decoder::max_log_map(const float delta1, const float delta2) { + if(delta1>delta2) return delta1; + return delta2; +} + +float tpc_decoder::constant_log_map(const float delta1, const float delta2) { + // Return maximum of delta1 and delta2 + // and in correction value if |delta1-delta2| < TVALUE + register float diff; + diff = delta2 - delta1; + + if ( diff > TVALUE ) + return( delta2 ); + else if ( diff < -TVALUE ) + return( delta1 ); + else if ( diff > 0 ) + return( delta2 + CVALUE ); + else + return( delta1 + CVALUE ); +} + +float tpc_decoder::log_map_lut_correction(const float delta1, const float delta2) { + float diff; + diff = (float) fabs( delta2 - delta1 ); + + if (delta1 > delta2) { + if (diff > BOUNDARY8 ) + return( delta1 ); + else if ( diff > BOUNDARY4 ) { + if (diff > BOUNDARY6 ) { + if ( diff > BOUNDARY7 ) + return( delta1 + VALUE7 + SLOPE7*(diff-BOUNDARY7) ); + else + return( delta1 + VALUE6 + SLOPE6*(diff-BOUNDARY6) ); + } else { + if ( diff > BOUNDARY5 ) + return( delta1 + VALUE5 + SLOPE5*(diff-BOUNDARY5) ); + else + return( delta1 + VALUE4 + SLOPE4*(diff-BOUNDARY4) ); + } + } else { + if (diff > BOUNDARY2 ) { + if ( diff > BOUNDARY3 ) + return( delta1 + VALUE3 + SLOPE3*(diff-BOUNDARY3) ); + else + return( delta1 + VALUE2 + SLOPE2*(diff-BOUNDARY2) ); + } else { + if ( diff > BOUNDARY1 ) + return( delta1 + VALUE1 + SLOPE1*(diff-BOUNDARY1) ); + else + return( delta1 + VALUE0 + SLOPE0*(diff-BOUNDARY0) ); + } + } + } else { + if (diff > BOUNDARY8 ) + return( delta2 ); + else if ( diff > BOUNDARY4 ) { + if (diff > BOUNDARY6 ) { + if ( diff > BOUNDARY7 ) + return( delta2 + VALUE7 + SLOPE7*(diff-BOUNDARY7) ); + else + return( delta2 + VALUE6 + SLOPE6*(diff-BOUNDARY6) ); + } else { + if ( diff > BOUNDARY5 ) + return( delta2 + VALUE5 + SLOPE5*(diff-BOUNDARY5) ); + else + return( delta2 + VALUE4 + SLOPE4*(diff-BOUNDARY4) ); + } + } else { + if (diff > BOUNDARY2 ) { + if ( diff > BOUNDARY3 ) + return( delta2 + VALUE3 + SLOPE3*(diff-BOUNDARY3) ); + else + return( delta2 + VALUE2 + SLOPE2*(diff-BOUNDARY2) ); + } else { + if ( diff > BOUNDARY1 ) + return( delta2 + VALUE1 + SLOPE1*(diff-BOUNDARY1) ); + else + return( delta2 + VALUE0 + SLOPE0*(diff-BOUNDARY0) ); + } + } + } +} + +float tpc_decoder::log_map_cfunction_correction(const float delta1, const float delta2) { + // Use C-function calls to compute the correction function + if (delta1 > delta2) { + return( (float) (delta1 + log( 1 + exp( delta2-delta1) ) ) ); + } else { + return( (float) (delta2 + log( 1 + exp( delta1-delta2) ) ) ); + } +} + +float tpc_decoder::gamma(const std::vector<float> rx_array, const int symbol) { + float rm = 0; + int ii; + int mask; + int nn = rx_array.size(); + + mask = 1; + for (ii=0;ii<nn;ii++) { + if (symbol&mask) + rm += rx_array[nn-ii-1]; + mask = mask<<1; + } + +// DEBUG_PRINT("nn=%d symbol=%d rm = %f\n", nn, symbol, rm); +// DEBUG_PRINT_F(fp, "nn=%d symbol=%d rm = %f\n", nn, symbol, rm); + + return(rm); +} + +template <typename T> int tpc_decoder::sgn(T val) { + return (T(0) < val) - (val < T(0)); +} + +void tpc_decoder::generic_work(void *inBuffer, void *outBuffer) { + const float *inPtr = (const float *) inBuffer; + unsigned char *out = (unsigned char *) outBuffer; + + int m, n, ii; + int iter; + + for(ii=0; ii<numInitLoadIter; ii++) { + memset(&channel_llr[ii][0], 0, sizeof(float)*codeword_N); + memset(&Z[ii][0], 0, sizeof(float)*codeword_N); + } + memset(&channel_llr[ii][0], 0, sizeof(float)*numInitRemaining); + memset(&Z[ii][0], 0, sizeof(float)*numInitRemaining); + memcpy(&channel_llr[ii][numInitRemaining], &inPtr[0], (codeword_N-numInitRemaining)*sizeof(float)); + memcpy(&Z[ii][numInitRemaining], &inPtr[0], (codeword_N-numInitRemaining)*sizeof(float)); + int inPtrIdx = codeword_N-numInitRemaining; + for(ii=ii+1; ii<codeword_M; ii++) { + memcpy(&channel_llr[ii][0], &inPtr[inPtrIdx], sizeof(float)*codeword_N); + memcpy(&Z[ii][0], &inPtr[inPtrIdx], sizeof(float)*codeword_N); + inPtrIdx += codeword_N; + } + + // clear out extrinsic-info between blocks + memset(&extrinsic_info[0], 0, sizeof(float)*extrinsic_info.size()); + + //DEBUG_PRINT("Starting TURBO Decoding\n"); + + for(iter=0; iter<d_max_iter; iter++) { + //DEBUG_PRINT("Turbo Iter=%d\n", iter+1); + //DEBUG_PRINT_F(fp, "Turbo Iter=%d\n", iter+1); + // decode each row + for(m=0; m<codeword_M; m++) { + // stage the data + volk_32f_x2_add_32f(&input_c_rows[0], &channel_llr[m][0], &extrinsic_info[m*codeword_N], codeword_N); + + //DEBUG_PRINT("input_c_rows -->\n"); + //DEBUG_PRINT_FLOAT_ARRAY_AS_FLOAT(&input_c_rows[0], codeword_N); + //DEBUG_PRINT_F(fp, "input_c_rows -->\n"); + //DEBUG_PRINT_FLOAT_ARRAY_AS_FLOAT_F(fp, &input_c_rows[0], codeword_N); + + // call siso decode + siso_decode_row(); + + //DEBUG_PRINT("output_u_rows -->\n"); + //DEBUG_PRINT_FLOAT_ARRAY_AS_FLOAT(&output_u_rows[0], output_u_rows.size()); + //DEBUG_PRINT_F(fp, "output_u_rows -->\n"); + //DEBUG_PRINT_FLOAT_ARRAY_AS_FLOAT_F(fp, &output_u_rows[0], output_u_rows.size()); + //DEBUG_PRINT("output_c_rows -->\n"); + //DEBUG_PRINT_FLOAT_ARRAY_AS_FLOAT(&output_c_rows[0], output_c_rows.size()); + //DEBUG_PRINT_F(fp, "output_c_rows -->\n"); + //DEBUG_PRINT_FLOAT_ARRAY_AS_FLOAT_F(fp, &output_c_rows[0], output_c_rows.size()); + + // copy the output coded back into Z, so we can feed it back through the decoder + // for more iterations + volk_32f_x2_subtract_32f(&Z[m][0], &output_c_rows[0], &extrinsic_info[m*codeword_N], codeword_N); + } + + // decode each col + earlyExit = true; + output_c_col_idx = 0; + for(n=0; n<codeword_N; n++) { + // stage the data + for(ii=0; ii<codeword_M; ii++) { + input_c_cols[ii] = Z[ii][n]; + } + + //DEBUG_PRINT("input_c_cols -->\n"); + //DEBUG_PRINT_FLOAT_ARRAY_AS_FLOAT(&input_c_cols[0], codeword_M); + //DEBUG_PRINT_F(fp, "input_c_cols -->\n"); + //DEBUG_PRINT_FLOAT_ARRAY_AS_FLOAT_F(fp, &input_c_cols[0], codeword_M); + + // call siso decode + siso_decode_col(); + + //DEBUG_PRINT("output_u_cols -->\n"); + //DEBUG_PRINT_FLOAT_ARRAY_AS_FLOAT(&output_u_cols[0], output_u_cols.size()); + //DEBUG_PRINT_F(fp, "output_u_cols -->\n"); + //DEBUG_PRINT_FLOAT_ARRAY_AS_FLOAT_F(fp, &output_u_cols[0], output_u_cols.size()); + //DEBUG_PRINT("output_c_cols -->\n"); + //DEBUG_PRINT_FLOAT_ARRAY_AS_FLOAT(&output_c_cols[output_c_col_idx], codeword_M); + //DEBUG_PRINT_F(fp, "output_c_cols -->\n"); + //DEBUG_PRINT_FLOAT_ARRAY_AS_FLOAT_F(fp, &output_c_cols[output_c_col_idx], codeword_M); + + // create the extrinsic_info vector, which subtracts from input_c_cols to prevent feedback + //DEBUG_PRINT("extrinsic_info -->\n"); + //DEBUG_PRINT_F(fp, "extrinsic_info -->\n"); + for(ii=0; ii<codeword_M; ii++) { + extrinsic_info[ii*codeword_N+n] = output_c_cols[output_c_col_idx+ii] - input_c_cols[ii]; + + if(earlyExit) { + if(sgn(output_c_cols[output_c_col_idx+ii])!=sgn(input_c_cols[ii])) { + earlyExit = false; + } + } + + + //DEBUG_PRINT("%f ", extrinsic_info[ii*codeword_N+n]); + //DEBUG_PRINT_F(fp, "%f ", extrinsic_info[ii*codeword_N+n]); + } + //DEBUG_PRINT("\n"); + //DEBUG_PRINT_F(fp, "\n"); + + output_c_col_idx += codeword_M; + } + if(earlyExit) break; + } + + ii=0; + for(m=0; m<d_kcol; m++) { + for(n=0; n<d_krow; n++) { + if(ii==0) { + m = mInit; + n = nInit; + } + + // make a hard decision +// if(output_matrix[n*codeword_M+m]>0) { + if(output_c_cols[n*codeword_M+m]>0) { + out[ii++] = (unsigned char) 1; + } + else { + out[ii++] = (unsigned char) 0; + } + } + } + + //DEBUG_PRINT(("Output\n")); + //DEBUG_PRINT_UCHAR_ARRAY(out, outputSize); + //DEBUG_PRINT_F(fp, "Output\n"); + //DEBUG_PRINT_UCHAR_ARRAY_F(fp, out, outputSize); +} + +int tpc_decoder::get_input_item_size() { + return sizeof(INPUT_DATATYPE); +} + +int tpc_decoder::get_output_item_size() { + return sizeof(OUTPUT_DATATYPE); +} + +int tpc_decoder::get_history() { + return 0; +} + +float tpc_decoder::get_shift() { + return 0.0; +} + +const char* tpc_decoder::get_conversion() { + return "none"; +} + +tpc_decoder::~tpc_decoder() { + fclose(fp); +} + +} +} |