summaryrefslogtreecommitdiff
path: root/gr-fec/lib/reed-solomon/decode_rs.c
diff options
context:
space:
mode:
Diffstat (limited to 'gr-fec/lib/reed-solomon/decode_rs.c')
-rw-r--r--gr-fec/lib/reed-solomon/decode_rs.c431
1 files changed, 218 insertions, 213 deletions
diff --git a/gr-fec/lib/reed-solomon/decode_rs.c b/gr-fec/lib/reed-solomon/decode_rs.c
index 9de22c87f5..df05527494 100644
--- a/gr-fec/lib/reed-solomon/decode_rs.c
+++ b/gr-fec/lib/reed-solomon/decode_rs.c
@@ -10,10 +10,10 @@
#include <string.h>
#ifndef NULL
-#define NULL ((void *)0)
+#define NULL ((void*)0)
#endif
-#define min(a,b) ((a) < (b) ? (a) : (b))
+#define min(a, b) ((a) < (b) ? (a) : (b))
#ifdef FIXED
#include "fixed.h"
@@ -25,249 +25,254 @@
int DECODE_RS(
#ifndef FIXED
-void *p,
+ void* p,
#endif
-DTYPE *data, int *eras_pos, int no_eras){
+ DTYPE* data,
+ int* eras_pos,
+ int no_eras)
+{
#ifndef FIXED
- struct rs *rs = (struct rs *)p;
+ struct rs* rs = (struct rs*)p;
#endif
- int deg_lambda, el, deg_omega;
- int i, j, r, k;
+ int deg_lambda, el, deg_omega;
+ int i, j, r, k;
#ifdef MAX_ARRAY
- DTYPE u,q,tmp,num1,num2,den,discr_r;
- DTYPE lambda[MAX_ARRAY], s[MAX_ARRAY]; /* Err+Eras Locator poly
- * and syndrome poly */
- DTYPE b[MAX_ARRAY], t[MAX_ARRAY], omega[MAX_ARRAY];
- DTYPE root[MAX_ARRAY], reg[MAX_ARRAY], loc[MAX_ARRAY];
+ DTYPE u, q, tmp, num1, num2, den, discr_r;
+ DTYPE lambda[MAX_ARRAY], s[MAX_ARRAY]; /* Err+Eras Locator poly
+ * and syndrome poly */
+ DTYPE b[MAX_ARRAY], t[MAX_ARRAY], omega[MAX_ARRAY];
+ DTYPE root[MAX_ARRAY], reg[MAX_ARRAY], loc[MAX_ARRAY];
#else
- DTYPE u,q,tmp,num1,num2,den,discr_r;
- DTYPE lambda[NROOTS+1], s[NROOTS]; /* Err+Eras Locator poly
- * and syndrome poly */
- DTYPE b[NROOTS+1], t[NROOTS+1], omega[NROOTS+1];
- DTYPE root[NROOTS], reg[NROOTS+1], loc[NROOTS];
+ DTYPE u, q, tmp, num1, num2, den, discr_r;
+ DTYPE lambda[NROOTS + 1], s[NROOTS]; /* Err+Eras Locator poly
+ * and syndrome poly */
+ DTYPE b[NROOTS + 1], t[NROOTS + 1], omega[NROOTS + 1];
+ DTYPE root[NROOTS], reg[NROOTS + 1], loc[NROOTS];
#endif
- int syn_error, count;
+ int syn_error, count;
- /* form the syndromes; i.e., evaluate data(x) at roots of g(x) */
- for(i=0;(unsigned int)i<NROOTS;i++)
- s[i] = data[0];
+ /* form the syndromes; i.e., evaluate data(x) at roots of g(x) */
+ for (i = 0; (unsigned int)i < NROOTS; i++)
+ s[i] = data[0];
- for(j=1;(unsigned int)j<NN;j++){
- for(i=0;(unsigned int)i<NROOTS;i++){
- if(s[i] == 0){
- s[i] = data[j];
- } else {
- s[i] = data[j] ^ ALPHA_TO[MODNN(INDEX_OF[s[i]] + (FCR+i)*PRIM)];
- }
+ for (j = 1; (unsigned int)j < NN; j++) {
+ for (i = 0; (unsigned int)i < NROOTS; i++) {
+ if (s[i] == 0) {
+ s[i] = data[j];
+ } else {
+ s[i] = data[j] ^ ALPHA_TO[MODNN(INDEX_OF[s[i]] + (FCR + i) * PRIM)];
+ }
+ }
}
- }
- /* Convert syndromes to index form, checking for nonzero condition */
- syn_error = 0;
- for(i=0;(unsigned int)i<NROOTS;i++){
- syn_error |= s[i];
- s[i] = INDEX_OF[s[i]];
- }
-
- if (!syn_error) {
- /* if syndrome is zero, data[] is a codeword and there are no
- * errors to correct. So return data[] unmodified
- */
- count = 0;
- goto finish;
- }
- memset(&lambda[1],0,NROOTS*sizeof(lambda[0]));
- lambda[0] = 1;
+ /* Convert syndromes to index form, checking for nonzero condition */
+ syn_error = 0;
+ for (i = 0; (unsigned int)i < NROOTS; i++) {
+ syn_error |= s[i];
+ s[i] = INDEX_OF[s[i]];
+ }
- if (no_eras > 0) {
- /* Init lambda to be the erasure locator polynomial */
- lambda[1] = ALPHA_TO[MODNN(PRIM*(NN-1-eras_pos[0]))];
- for (i = 1; i < no_eras; i++) {
- u = MODNN(PRIM*(NN-1-eras_pos[i]));
- for (j = i+1; j > 0; j--) {
- tmp = INDEX_OF[lambda[j - 1]];
- if(tmp != A0)
- lambda[j] ^= ALPHA_TO[MODNN(u + tmp)];
- }
+ if (!syn_error) {
+ /* if syndrome is zero, data[] is a codeword and there are no
+ * errors to correct. So return data[] unmodified
+ */
+ count = 0;
+ goto finish;
}
+ memset(&lambda[1], 0, NROOTS * sizeof(lambda[0]));
+ lambda[0] = 1;
+
+ if (no_eras > 0) {
+ /* Init lambda to be the erasure locator polynomial */
+ lambda[1] = ALPHA_TO[MODNN(PRIM * (NN - 1 - eras_pos[0]))];
+ for (i = 1; i < no_eras; i++) {
+ u = MODNN(PRIM * (NN - 1 - eras_pos[i]));
+ for (j = i + 1; j > 0; j--) {
+ tmp = INDEX_OF[lambda[j - 1]];
+ if (tmp != A0)
+ lambda[j] ^= ALPHA_TO[MODNN(u + tmp)];
+ }
+ }
#if DEBUG >= 1
- /* Test code that verifies the erasure locator polynomial just constructed
- Needed only for decoder debugging. */
+ /* Test code that verifies the erasure locator polynomial just constructed
+ Needed only for decoder debugging. */
- /* find roots of the erasure location polynomial */
- for(i=1;i<=no_eras;i++)
- reg[i] = INDEX_OF[lambda[i]];
+ /* find roots of the erasure location polynomial */
+ for (i = 1; i <= no_eras; i++)
+ reg[i] = INDEX_OF[lambda[i]];
- count = 0;
- for (i = 1,k=IPRIM-1; i <= NN; i++,k = MODNN(k+IPRIM)) {
- q = 1;
- for (j = 1; j <= no_eras; j++)
- if (reg[j] != A0) {
- reg[j] = MODNN(reg[j] + j);
- q ^= ALPHA_TO[reg[j]];
- }
- if (q != 0)
- continue;
- /* store root and error location number indices */
- root[count] = i;
- loc[count] = k;
- count++;
- }
- if (count != no_eras) {
- printf("count = %d no_eras = %d\n lambda(x) is WRONG\n",count,no_eras);
- count = -1;
- goto finish;
- }
+ count = 0;
+ for (i = 1, k = IPRIM - 1; i <= NN; i++, k = MODNN(k + IPRIM)) {
+ q = 1;
+ for (j = 1; j <= no_eras; j++)
+ if (reg[j] != A0) {
+ reg[j] = MODNN(reg[j] + j);
+ q ^= ALPHA_TO[reg[j]];
+ }
+ if (q != 0)
+ continue;
+ /* store root and error location number indices */
+ root[count] = i;
+ loc[count] = k;
+ count++;
+ }
+ if (count != no_eras) {
+ printf("count = %d no_eras = %d\n lambda(x) is WRONG\n", count, no_eras);
+ count = -1;
+ goto finish;
+ }
#if DEBUG >= 2
- printf("\n Erasure positions as determined by roots of Eras Loc Poly:\n");
- for (i = 0; i < count; i++)
- printf("%d ", loc[i]);
- printf("\n");
+ printf("\n Erasure positions as determined by roots of Eras Loc Poly:\n");
+ for (i = 0; i < count; i++)
+ printf("%d ", loc[i]);
+ printf("\n");
#endif
#endif
- }
- for(i=0;(unsigned int)i<NROOTS+1;i++)
- b[i] = INDEX_OF[lambda[i]];
-
- /*
- * Begin Berlekamp-Massey algorithm to determine error+erasure
- * locator polynomial
- */
- r = no_eras;
- el = no_eras;
- while ((unsigned int)(++r) <= NROOTS) { /* r is the step number */
- /* Compute discrepancy at the r-th step in poly-form */
- discr_r = 0;
- for (i = 0; i < r; i++){
- if ((lambda[i] != 0) && (s[r-i-1] != A0)) {
- discr_r ^= ALPHA_TO[MODNN(INDEX_OF[lambda[i]] + s[r-i-1])];
- }
}
- discr_r = INDEX_OF[discr_r]; /* Index form */
- if (discr_r == A0) {
- /* 2 lines below: B(x) <-- x*B(x) */
- memmove(&b[1],b,NROOTS*sizeof(b[0]));
- b[0] = A0;
- } else {
- /* 7 lines below: T(x) <-- lambda(x) - discr_r*x*b(x) */
- t[0] = lambda[0];
- for (i = 0 ; (unsigned int)i < NROOTS; i++) {
- if(b[i] != A0)
- t[i+1] = lambda[i+1] ^ ALPHA_TO[MODNN(discr_r + b[i])];
- else
- t[i+1] = lambda[i+1];
- }
- if (2 * el <= r + no_eras - 1) {
- el = r + no_eras - el;
- /*
- * 2 lines below: B(x) <-- inv(discr_r) *
- * lambda(x)
- */
- for (i = 0; (unsigned int)i <= NROOTS; i++)
- b[i] = (lambda[i] == 0) ? A0 : MODNN(INDEX_OF[lambda[i]] - discr_r + NN);
- } else {
- /* 2 lines below: B(x) <-- x*B(x) */
- memmove(&b[1],b,NROOTS*sizeof(b[0]));
- b[0] = A0;
- }
- memcpy(lambda,t,(NROOTS+1)*sizeof(t[0]));
+ for (i = 0; (unsigned int)i < NROOTS + 1; i++)
+ b[i] = INDEX_OF[lambda[i]];
+
+ /*
+ * Begin Berlekamp-Massey algorithm to determine error+erasure
+ * locator polynomial
+ */
+ r = no_eras;
+ el = no_eras;
+ while ((unsigned int)(++r) <= NROOTS) { /* r is the step number */
+ /* Compute discrepancy at the r-th step in poly-form */
+ discr_r = 0;
+ for (i = 0; i < r; i++) {
+ if ((lambda[i] != 0) && (s[r - i - 1] != A0)) {
+ discr_r ^= ALPHA_TO[MODNN(INDEX_OF[lambda[i]] + s[r - i - 1])];
+ }
+ }
+ discr_r = INDEX_OF[discr_r]; /* Index form */
+ if (discr_r == A0) {
+ /* 2 lines below: B(x) <-- x*B(x) */
+ memmove(&b[1], b, NROOTS * sizeof(b[0]));
+ b[0] = A0;
+ } else {
+ /* 7 lines below: T(x) <-- lambda(x) - discr_r*x*b(x) */
+ t[0] = lambda[0];
+ for (i = 0; (unsigned int)i < NROOTS; i++) {
+ if (b[i] != A0)
+ t[i + 1] = lambda[i + 1] ^ ALPHA_TO[MODNN(discr_r + b[i])];
+ else
+ t[i + 1] = lambda[i + 1];
+ }
+ if (2 * el <= r + no_eras - 1) {
+ el = r + no_eras - el;
+ /*
+ * 2 lines below: B(x) <-- inv(discr_r) *
+ * lambda(x)
+ */
+ for (i = 0; (unsigned int)i <= NROOTS; i++)
+ b[i] =
+ (lambda[i] == 0) ? A0 : MODNN(INDEX_OF[lambda[i]] - discr_r + NN);
+ } else {
+ /* 2 lines below: B(x) <-- x*B(x) */
+ memmove(&b[1], b, NROOTS * sizeof(b[0]));
+ b[0] = A0;
+ }
+ memcpy(lambda, t, (NROOTS + 1) * sizeof(t[0]));
+ }
}
- }
- /* Convert lambda to index form and compute deg(lambda(x)) */
- deg_lambda = 0;
- for(i=0;(unsigned int)i<NROOTS+1;i++){
- lambda[i] = INDEX_OF[lambda[i]];
- if(lambda[i] != A0)
- deg_lambda = i;
- }
- /* Find roots of the error+erasure locator polynomial by Chien search */
- memcpy(&reg[1],&lambda[1],NROOTS*sizeof(reg[0]));
- count = 0; /* Number of roots of lambda(x) */
- for (i = 1,k=IPRIM-1; (unsigned int)i <= NN; i++,k = MODNN(k+IPRIM)) {
- q = 1; /* lambda[0] is always 0 */
- for (j = deg_lambda; j > 0; j--){
- if (reg[j] != A0) {
- reg[j] = MODNN(reg[j] + j);
- q ^= ALPHA_TO[reg[j]];
- }
+ /* Convert lambda to index form and compute deg(lambda(x)) */
+ deg_lambda = 0;
+ for (i = 0; (unsigned int)i < NROOTS + 1; i++) {
+ lambda[i] = INDEX_OF[lambda[i]];
+ if (lambda[i] != A0)
+ deg_lambda = i;
}
- if (q != 0)
- continue; /* Not a root */
- /* store root (index-form) and error location number */
-#if DEBUG>=2
- printf("count %d root %d loc %d\n",count,i,k);
+ /* Find roots of the error+erasure locator polynomial by Chien search */
+ memcpy(&reg[1], &lambda[1], NROOTS * sizeof(reg[0]));
+ count = 0; /* Number of roots of lambda(x) */
+ for (i = 1, k = IPRIM - 1; (unsigned int)i <= NN; i++, k = MODNN(k + IPRIM)) {
+ q = 1; /* lambda[0] is always 0 */
+ for (j = deg_lambda; j > 0; j--) {
+ if (reg[j] != A0) {
+ reg[j] = MODNN(reg[j] + j);
+ q ^= ALPHA_TO[reg[j]];
+ }
+ }
+ if (q != 0)
+ continue; /* Not a root */
+ /* store root (index-form) and error location number */
+#if DEBUG >= 2
+ printf("count %d root %d loc %d\n", count, i, k);
#endif
- root[count] = i;
- loc[count] = k;
- /* If we've already found max possible roots,
- * abort the search to save time
- */
- if(++count == deg_lambda)
- break;
- }
- if (deg_lambda != count) {
+ root[count] = i;
+ loc[count] = k;
+ /* If we've already found max possible roots,
+ * abort the search to save time
+ */
+ if (++count == deg_lambda)
+ break;
+ }
+ if (deg_lambda != count) {
+ /*
+ * deg(lambda) unequal to number of roots => uncorrectable
+ * error detected
+ */
+ count = -1;
+ goto finish;
+ }
/*
- * deg(lambda) unequal to number of roots => uncorrectable
- * error detected
+ * Compute err+eras evaluator poly omega(x) = s(x)*lambda(x) (modulo
+ * x**NROOTS). in index form. Also find deg(omega).
*/
- count = -1;
- goto finish;
- }
- /*
- * Compute err+eras evaluator poly omega(x) = s(x)*lambda(x) (modulo
- * x**NROOTS). in index form. Also find deg(omega).
- */
- deg_omega = 0;
- for (i = 0; (unsigned int)i < NROOTS;i++){
- tmp = 0;
- j = (deg_lambda < i) ? deg_lambda : i;
- for(;j >= 0; j--){
- if ((s[i - j] != A0) && (lambda[j] != A0))
- tmp ^= ALPHA_TO[MODNN(s[i - j] + lambda[j])];
+ deg_omega = 0;
+ for (i = 0; (unsigned int)i < NROOTS; i++) {
+ tmp = 0;
+ j = (deg_lambda < i) ? deg_lambda : i;
+ for (; j >= 0; j--) {
+ if ((s[i - j] != A0) && (lambda[j] != A0))
+ tmp ^= ALPHA_TO[MODNN(s[i - j] + lambda[j])];
+ }
+ if (tmp != 0)
+ deg_omega = i;
+ omega[i] = INDEX_OF[tmp];
}
- if(tmp != 0)
- deg_omega = i;
- omega[i] = INDEX_OF[tmp];
- }
- omega[NROOTS] = A0;
+ omega[NROOTS] = A0;
- /*
- * Compute error values in poly-form. num1 = omega(inv(X(l))), num2 =
- * inv(X(l))**(FCR-1) and den = lambda_pr(inv(X(l))) all in poly-form
- */
- for (j = count-1; j >=0; j--) {
- num1 = 0;
- for (i = deg_omega; i >= 0; i--) {
- if (omega[i] != A0)
- num1 ^= ALPHA_TO[MODNN(omega[i] + i * root[j])];
- }
- num2 = ALPHA_TO[MODNN(root[j] * (FCR - 1) + NN)];
- den = 0;
+ /*
+ * Compute error values in poly-form. num1 = omega(inv(X(l))), num2 =
+ * inv(X(l))**(FCR-1) and den = lambda_pr(inv(X(l))) all in poly-form
+ */
+ for (j = count - 1; j >= 0; j--) {
+ num1 = 0;
+ for (i = deg_omega; i >= 0; i--) {
+ if (omega[i] != A0)
+ num1 ^= ALPHA_TO[MODNN(omega[i] + i * root[j])];
+ }
+ num2 = ALPHA_TO[MODNN(root[j] * (FCR - 1) + NN)];
+ den = 0;
- /* lambda[i+1] for i even is the formal derivative lambda_pr of lambda[i] */
- for (i = (int)min((unsigned int)deg_lambda,NROOTS-1) & ~1; i >= 0; i -=2) {
- if(lambda[i+1] != A0)
- den ^= ALPHA_TO[MODNN(lambda[i+1] + i * root[j])];
- }
- if (den == 0) {
+ /* lambda[i+1] for i even is the formal derivative lambda_pr of lambda[i] */
+ for (i = (int)min((unsigned int)deg_lambda, NROOTS - 1) & ~1; i >= 0; i -= 2) {
+ if (lambda[i + 1] != A0)
+ den ^= ALPHA_TO[MODNN(lambda[i + 1] + i * root[j])];
+ }
+ if (den == 0) {
#if DEBUG >= 1
- printf("\n ERROR: denominator = 0\n");
+ printf("\n ERROR: denominator = 0\n");
#endif
- count = -1;
- goto finish;
+ count = -1;
+ goto finish;
+ }
+ /* Apply error to data */
+ if (num1 != 0) {
+ data[loc[j]] ^=
+ ALPHA_TO[MODNN(INDEX_OF[num1] + INDEX_OF[num2] + NN - INDEX_OF[den])];
+ }
}
- /* Apply error to data */
- if (num1 != 0) {
- data[loc[j]] ^= ALPHA_TO[MODNN(INDEX_OF[num1] + INDEX_OF[num2] + NN - INDEX_OF[den])];
+finish:
+ if (eras_pos != NULL) {
+ for (i = 0; i < count; i++)
+ eras_pos[i] = loc[i];
}
- }
- finish:
- if(eras_pos != NULL){
- for(i=0;i<count;i++)
- eras_pos[i] = loc[i];
- }
- return count;
+ return count;
}