summaryrefslogtreecommitdiff
path: root/gr-fec/lib/ldpc_H_matrix_impl.cc
diff options
context:
space:
mode:
Diffstat (limited to 'gr-fec/lib/ldpc_H_matrix_impl.cc')
-rw-r--r--gr-fec/lib/ldpc_H_matrix_impl.cc437
1 files changed, 437 insertions, 0 deletions
diff --git a/gr-fec/lib/ldpc_H_matrix_impl.cc b/gr-fec/lib/ldpc_H_matrix_impl.cc
new file mode 100644
index 0000000000..caa72d7823
--- /dev/null
+++ b/gr-fec/lib/ldpc_H_matrix_impl.cc
@@ -0,0 +1,437 @@
+/* -*- c++ -*- */
+/*
+ * Copyright 2015 Free Software Foundation, Inc.
+ *
+ * This is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published
+ * by the Free Software Foundation; either version 3, or (at your
+ * option) any later version.
+ *
+ * This software is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this software; see the file COPYING. If not, write to
+ * the Free Software Foundation, Inc., 51 Franklin Street,
+ * Boston, MA 02110-1301, USA.
+ */
+#ifdef HAVE_CONFIG_H
+#include "config.h"
+#endif
+
+#include "ldpc_H_matrix_impl.h"
+#include <math.h>
+#include <fstream>
+#include <vector>
+#include <sstream>
+#include <iostream>
+#include <stdexcept>
+
+namespace gr {
+ namespace fec {
+ namespace code {
+
+ ldpc_H_matrix::sptr
+ ldpc_H_matrix::make(const std::string filename, unsigned int gap)
+ {
+ return ldpc_H_matrix::sptr
+ (new ldpc_H_matrix_impl(filename, gap));
+ }
+
+ ldpc_H_matrix_impl::ldpc_H_matrix_impl(const std::string filename, unsigned int gap)
+ : fec_mtrx_impl()
+ {
+ matrix_sptr x = read_matrix_from_file(filename);
+ d_num_cols = x->size2;
+ d_num_rows = x->size1;
+ d_gap = gap;
+
+ // Make an actual copy so we guarantee that we're not sharing
+ // memory with another class that reads the same alist file.
+ gsl_matrix *temp_mtrx = gsl_matrix_alloc(d_num_rows, d_num_cols);
+ gsl_matrix_memcpy(temp_mtrx, (gsl_matrix*)(x.get()));
+ d_H_sptr = matrix_sptr((matrix*)temp_mtrx, matrix_free);
+
+ // Length of codeword = # of columns
+ d_n = d_num_cols;
+
+ // Length of information word = (# of columns) - (# of rows)
+ d_k = d_num_cols - d_num_rows;
+
+ set_parameters_for_encoding();
+
+ // For info about this see get_base_ptr() function
+ //d_base_ptr = this;
+
+ // The parity bits come first in this particular matrix
+ // format (specifically required for the Richardson Urbanke
+ // encoder)
+ d_par_bits_last = false;
+
+ d_s = gsl_matrix_alloc(d_k, 1);
+ d_temp1 = gsl_matrix_alloc(B()->size1, d_s->size2);
+ d_temp2 = gsl_matrix_alloc(T()->size1, 1);
+ d_temp3 = gsl_matrix_alloc(E()->size1, d_temp2->size2);
+ d_temp4 = gsl_matrix_alloc(D()->size1, d_s->size2);
+ d_temp5 = gsl_matrix_alloc(d_temp4->size1, d_temp3->size2);
+ d_p1 = gsl_matrix_alloc(T()->size1, 1);
+ d_p2 = gsl_matrix_alloc(phi_inverse()->size1, d_temp5->size2);
+ d_temp6 = gsl_matrix_alloc(A()->size1, d_p2->size2);
+ d_temp7 = gsl_matrix_alloc(d_temp6->size1, d_temp1->size2);
+
+ d_base_ptr = reinterpret_cast<fec_mtrx*>(this);
+ } // Constructor
+
+ const gsl_matrix*
+ ldpc_H_matrix_impl::A() const
+ {
+ const gsl_matrix *A_ptr = &d_A_view.matrix;
+ return A_ptr;
+ }
+
+ const gsl_matrix*
+ ldpc_H_matrix_impl::B() const
+ {
+ const gsl_matrix *B_ptr = &d_B_view.matrix;
+ return B_ptr;
+ }
+
+ const gsl_matrix*
+ ldpc_H_matrix_impl::D() const
+ {
+ const gsl_matrix *D_ptr = &d_D_view.matrix;
+ return D_ptr;
+ }
+
+ const gsl_matrix*
+ ldpc_H_matrix_impl::E() const
+ {
+ const gsl_matrix *E_ptr = &d_E_view.matrix;
+ return E_ptr;
+ }
+
+ const gsl_matrix*
+ ldpc_H_matrix_impl::T() const
+ {
+ const gsl_matrix *T_ptr = &d_T_view.matrix;
+ return T_ptr;
+ }
+
+ const gsl_matrix*
+ ldpc_H_matrix_impl::phi_inverse() const
+ {
+ const gsl_matrix *phi_inverse_ptr = d_phi_inverse_ptr;
+ return phi_inverse_ptr;
+ }
+
+ void
+ ldpc_H_matrix_impl::set_parameters_for_encoding()
+ {
+
+ // This function defines all of the submatrices that will be
+ // needed during encoding.
+
+ unsigned int t = d_num_rows - d_gap;
+
+ // T submatrix
+ d_T_view = gsl_matrix_submatrix((gsl_matrix*)(d_H_sptr.get()),
+ 0, 0, t, t);
+
+ gsl_matrix *d_T_inverse_ptr;
+ try {
+ d_T_inverse_ptr = calc_inverse_mod2(&d_T_view.matrix);
+ }
+ catch (char const *exceptionString) {
+ std::cout << "Error in set_parameters_for_encoding while "
+ << "looking for inverse T matrix: "
+ << exceptionString
+ << "Tip: verify that the correct gap is being "
+ << "specified for this alist file.\n";
+
+ throw std::runtime_error("set_parameters_for_encoding");
+ }
+
+ // E submatrix
+ d_E_view = gsl_matrix_submatrix((gsl_matrix*)(d_H_sptr.get()),
+ t, 0, d_gap, d_n-d_k-d_gap);
+
+ // A submatrix
+ d_A_view = gsl_matrix_submatrix((gsl_matrix*)(d_H_sptr.get()),
+ 0, t, t, d_gap);
+
+ // C submatrix (used to find phi but not during encoding)
+ gsl_matrix_view C_view = gsl_matrix_submatrix((gsl_matrix*)(d_H_sptr.get()),
+ t, t, d_gap, d_gap);
+
+ // These are just temporary matrices used to find phi.
+ gsl_matrix *temp1 = gsl_matrix_alloc(d_E_view.matrix.size1, d_T_inverse_ptr->size2);
+ mult_matrices_mod2(temp1, &d_E_view.matrix, d_T_inverse_ptr);
+
+ gsl_matrix *temp2 = gsl_matrix_alloc(temp1->size1, d_A_view.matrix.size2);
+ mult_matrices_mod2(temp2, temp1, &d_A_view.matrix);
+
+ // Solve for phi.
+ gsl_matrix *phi = gsl_matrix_alloc(C_view.matrix.size1, temp2->size2);
+ add_matrices_mod2(phi, &C_view.matrix, temp2);
+
+ // If phi has at least one nonzero entry, try for inverse.
+ if (gsl_matrix_max(phi)) {
+ try {
+ gsl_matrix *inverse_phi = calc_inverse_mod2(phi);
+
+ // At this point, an inverse was found.
+ d_phi_inverse_ptr = inverse_phi;
+
+ }
+ catch (char const *exceptionString) {
+
+ std::cout << "Error in set_parameters_for_encoding while"
+ << " finding inverse_phi: " << exceptionString
+ << "Tip: verify that the correct gap is being "
+ << "specified for this alist file.\n";
+ throw std::runtime_error("set_parameters_for_encoding");
+ }
+ }
+
+ // B submatrix
+ d_B_view = gsl_matrix_submatrix((gsl_matrix*)(d_H_sptr.get()),
+ 0, t + d_gap, t, d_n-d_gap-t);
+
+ // D submatrix
+ d_D_view = gsl_matrix_submatrix((gsl_matrix*)(d_H_sptr.get()),
+ t, t + d_gap, d_gap, d_n-d_gap-t);
+
+ // Free memory
+ gsl_matrix_free(temp1);
+ gsl_matrix_free(temp2);
+ gsl_matrix_free(phi);
+ gsl_matrix_free(d_T_inverse_ptr);
+ }
+
+ void
+ ldpc_H_matrix_impl::back_solve_mod2(gsl_matrix *x,
+ const gsl_matrix *U,
+ const gsl_matrix *y) const
+ {
+ // Exploit the fact that the matrix T is upper triangular and
+ // sparse. In the steps to find p1 and p2, back solve rather
+ // than do matrix multiplication to reduce number of
+ // operations required.
+
+ // Form is Ux = y where U is upper triangular and y is column
+ // vector. Solve for x.
+
+ // Allocate memory for the result
+ int num_rows = (*U).size1;
+ int num_cols_U = (*U).size2;
+
+ // Back solve
+ for (int i = num_rows-1; i >= 0; i--) {
+ // x[i] = y[i]
+ gsl_matrix_set(x, i, 0, gsl_matrix_get(y, i, 0));
+
+ int j;
+ for (j = i+1; j < num_cols_U; j++) {
+ int U_i_j = gsl_matrix_get(U, i, j);
+ int x_i = gsl_matrix_get(x, i, 0);
+ int x_j = gsl_matrix_get(x, j, 0);
+ int temp1 = (U_i_j * x_j) % 2;
+ int temp2 = (x_i + temp1) % 2;
+ gsl_matrix_set(x, i, 0, temp2);
+ }
+ // Perform x[i] /= U[i,i], GF(2) operations
+ int U_i_i = gsl_matrix_get(U, i, i);
+ int x_i = gsl_matrix_get(x, i, 0);
+ if(x_i==0 && U_i_i==1)
+ gsl_matrix_set(x, i, 0, 0);
+ else if (x_i==0 && U_i_i==0)
+ gsl_matrix_set(x, i, 0, 0);
+ else if (x_i==1 && U_i_i==1)
+ gsl_matrix_set(x, i, 0, 1);
+ else if (x_i==1 && U_i_i==0)
+ std::cout << "Error in "
+ << " ldpc_encoder_impl::back_solve_mod2,"
+ << " division not defined.\n";
+ else
+ std::cout << "Error in ldpc_encoder_impl::back_solve_mod2\n";
+ }
+ }
+
+
+ void
+ ldpc_H_matrix_impl::encode(unsigned char *outbuffer,
+ const unsigned char *inbuffer) const
+ {
+ unsigned int index, k = d_k;
+ for (index = 0; index < k; index++) {
+ double value = static_cast<double>(inbuffer[index]);
+ gsl_matrix_set(d_s, index, 0, value);
+ }
+
+ // Solve for p2 (parity part). By using back substitution,
+ // the overall complexity of determining p2 is O(n + g^2).
+ mult_matrices_mod2(d_temp1, B(), d_s);
+ back_solve_mod2(d_temp2, T(), d_temp1);
+ mult_matrices_mod2(d_temp3, E(), d_temp2);
+ mult_matrices_mod2(d_temp4, D(), d_s);
+ add_matrices_mod2(d_temp5, d_temp4, d_temp3);
+ mult_matrices_mod2(d_p2, phi_inverse(), d_temp5);
+
+ // Solve for p1 (parity part). By using back substitution,
+ // the overall complexity of determining p1 is O(n).
+ mult_matrices_mod2(d_temp6, A(), d_p2);
+ add_matrices_mod2(d_temp7, d_temp6, d_temp1);
+ back_solve_mod2(d_p1, T(), d_temp7);
+
+ // Populate the codeword to be output
+ unsigned int p1_length = (*d_p1).size1;
+ unsigned int p2_length = (*d_p2).size1;
+ for (index = 0; index < p1_length; index++) {
+ int value = gsl_matrix_get(d_p1, index, 0);
+ outbuffer[index] = value;
+ }
+ for (index = 0; index < p2_length; index++) {
+ int value = gsl_matrix_get(d_p2, index, 0);
+ outbuffer[p1_length+index] = value;
+ }
+ for (index = 0; index < k; index++) {
+ int value = gsl_matrix_get(d_s, index, 0);
+ outbuffer[p1_length+p2_length+index] = value;
+ }
+ }
+
+
+ void
+ ldpc_H_matrix_impl::decode(unsigned char *outbuffer,
+ const float *inbuffer,
+ unsigned int frame_size,
+ unsigned int max_iterations) const
+ {
+ unsigned int index, n = d_n;
+ gsl_matrix *x = gsl_matrix_alloc(n, 1);
+ for (index = 0; index < n; index++) {
+ double value = inbuffer[index] > 0 ? 1.0 : 0.0;
+ gsl_matrix_set(x, index, 0, value);
+ }
+
+ // Initialize counter
+ unsigned int count = 0;
+
+ // Calculate syndrome
+ gsl_matrix *syndrome = gsl_matrix_alloc(H()->size1, x->size2);
+ mult_matrices_mod2(syndrome, H(), x);
+
+ // Flag for finding a valid codeword
+ bool found_word = false;
+
+ // If the syndrome is all 0s, then codeword is valid and we
+ // don't need to loop; we're done.
+ if (gsl_matrix_isnull(syndrome)) {
+ found_word = true;
+ }
+
+ // Loop until valid codeword is found, or max number of
+ // iterations is reached, whichever comes first
+ while ((count < max_iterations) && !found_word) {
+ // For each of the n bits in the codeword, determine how
+ // many of the unsatisfied parity checks involve that bit.
+ // To do this, first find the nonzero entries in the
+ // syndrome. The entry numbers correspond to the rows of
+ // interest in H.
+ std::vector<int> rows_of_interest_in_H;
+ for (index = 0; index < (*syndrome).size1; index++) {
+ if (gsl_matrix_get(syndrome, index, 0)) {
+ rows_of_interest_in_H.push_back(index);
+ }
+ }
+
+ // Second, for each bit, determine how many of the
+ // unsatisfied parity checks involve this bit and store
+ // the count.
+ unsigned int i, col_num, n = d_n;
+ std::vector<int> counts(n,0);
+ for (i = 0; i < rows_of_interest_in_H.size(); i++) {
+ unsigned int row_num = rows_of_interest_in_H[i];
+ for (col_num = 0; col_num < n; col_num++) {
+ double value = gsl_matrix_get(H(),
+ row_num,
+ col_num);
+ if (value > 0) {
+ counts[col_num] = counts[col_num] + 1;
+ }
+ }
+ }
+
+ // Next, determine which bit(s) is associated with the most
+ // unsatisfied parity checks, and flip it/them.
+ int max = 0;
+ for (index = 0; index < n; index++) {
+ if (counts[index] > max) {
+ max = counts[index];
+ }
+ }
+
+ for (index = 0; index < n; index++) {
+ if (counts[index] == max) {
+ unsigned int value = gsl_matrix_get(x, index, 0);
+ unsigned int new_value = value ^ 1;
+ gsl_matrix_set(x, index, 0, new_value);
+ }
+ }
+
+ // Check the syndrome; see if valid codeword has been found
+ mult_matrices_mod2(syndrome, H(), x);
+ if (gsl_matrix_isnull(syndrome)) {
+ found_word = true;
+ break;
+ }
+ count++;
+ }
+
+ // Extract the info word and assign to output. This will
+ // happen regardless of if a valid codeword was found.
+ if(parity_bits_come_last()) {
+ for(index = 0; index < frame_size; index++) {
+ outbuffer[index] = gsl_matrix_get(x, index, 0);
+ }
+ }
+ else {
+ for(index = 0; index < frame_size; index++) {
+ unsigned int i = index + n - frame_size;
+ int value = gsl_matrix_get(x, i, 0);
+ outbuffer[index] = value;
+ }
+ }
+
+ // Free memory
+ gsl_matrix_free(syndrome);
+ gsl_matrix_free(x);
+ }
+
+ gr::fec::code::fec_mtrx*
+ ldpc_H_matrix_impl::get_base_ptr()
+ {
+ return d_base_ptr;
+ }
+
+ ldpc_H_matrix_impl::~ldpc_H_matrix_impl()
+ {
+ // Free temporary matrices
+ gsl_matrix_free(d_temp1);
+ gsl_matrix_free(d_temp2);
+ gsl_matrix_free(d_temp3);
+ gsl_matrix_free(d_temp4);
+ gsl_matrix_free(d_temp5);
+ gsl_matrix_free(d_temp6);
+ gsl_matrix_free(d_temp7);
+ gsl_matrix_free(d_p1);
+ gsl_matrix_free(d_p2);
+
+ // Call the gsl_matrix_free function to free memory.
+ gsl_matrix_free (d_phi_inverse_ptr);
+ }
+ } /* namespace code */
+ } /* namespace fec */
+} /* namespace gr */