summaryrefslogtreecommitdiff
path: root/gr-digital/python/digital/qa_linear_equalizer.py
diff options
context:
space:
mode:
Diffstat (limited to 'gr-digital/python/digital/qa_linear_equalizer.py')
-rwxr-xr-xgr-digital/python/digital/qa_linear_equalizer.py142
1 files changed, 142 insertions, 0 deletions
diff --git a/gr-digital/python/digital/qa_linear_equalizer.py b/gr-digital/python/digital/qa_linear_equalizer.py
new file mode 100755
index 0000000000..d7a4a597f3
--- /dev/null
+++ b/gr-digital/python/digital/qa_linear_equalizer.py
@@ -0,0 +1,142 @@
+#!/usr/bin/env python
+#
+# Copyright 2020 Free Software Foundation, Inc.
+#
+# This file is part of GNU Radio
+#
+# SPDX-License-Identifier: GPL-3.0-or-later
+#
+#
+
+from gnuradio import gr, gr_unittest
+
+import random, numpy
+from gnuradio import digital, blocks, channels
+
+class qa_linear_equalizer(gr_unittest.TestCase):
+
+ def unpack_values(self, values_in, bits_per_value, bits_per_symbol):
+ # verify that 8 is divisible by bits_per_symbol
+ m = bits_per_value / bits_per_symbol
+ # print(m)
+ mask = 2**(bits_per_symbol)-1
+
+ if bits_per_value != m*bits_per_symbol:
+ print("error - bits per symbols must fit nicely into bits_per_value bit values")
+ return []
+
+ num_values = len(values_in)
+ num_symbols = int(num_values*( m) )
+
+ cur_byte = 0
+ cur_bit = 0
+ out = []
+ for i in range(num_symbols):
+ s = (values_in[cur_byte] >> (bits_per_value-bits_per_symbol-cur_bit)) & mask
+ out.append(s)
+ cur_bit += bits_per_symbol
+
+ if cur_bit >= bits_per_value:
+ cur_bit = 0
+ cur_byte += 1
+
+ return out
+
+ def map_symbols_to_constellation(self, symbols, cons):
+ l = list(map(lambda x: cons.points()[x], symbols))
+ return l
+
+
+ def setUp(self):
+ random.seed(987654)
+ self.tb = gr.top_block()
+ self.num_data = num_data = 10000
+
+
+ self.sps = sps = 4
+ self.eb = eb = 0.35
+ self.preamble = preamble = [0x27,0x2F,0x18,0x5D,0x5B,0x2A,0x3F,0x71,0x63,0x3C,0x17,0x0C,0x0A,0x41,0xD6,0x1F,0x4C,0x23,0x65,0x68,0xED,0x1C,0x77,0xA7,0x0E,0x0A,0x9E,0x47,0x82,0xA4,0x57,0x24,]
+
+ self.payload_size = payload_size = 300 # bytes
+ self.data = data = [0]*4+[random.getrandbits(8) for i in range(payload_size)]
+ self.gain = gain = .001 # LMS gain
+ self.corr_thresh = corr_thresh = 3e6
+ self.num_taps = num_taps = 16
+
+
+
+ def tearDown(self):
+ self.tb = None
+
+
+ def transform(self, src_data, gain, const):
+ SRC = blocks.vector_source_c(src_data, False)
+ EQU = digital.lms_dd_equalizer_cc(4, gain, 1, const.base())
+ DST = blocks.vector_sink_c()
+ self.tb.connect(SRC, EQU, DST)
+ self.tb.run()
+ return DST.data()
+
+ def test_001_identity(self):
+ # Constant modulus signal so no adjustments
+ const = digital.constellation_qpsk()
+ src_data = const.points()*1000
+
+ N = 100 # settling time
+ expected_data = src_data[N:]
+ result = self.transform(src_data, 0.1, const)[N:]
+
+ N = -500
+ self.assertComplexTuplesAlmostEqual(expected_data[N:], result[N:], 5)
+
+ def test_qpsk_3tap_lms_training(self):
+ # set up fg
+ gain = 0.01 # LMS gain
+ num_taps = 16
+ num_samp = 2000
+ num_test = 500
+ cons = digital.constellation_qpsk().base()
+ rxmod = digital.generic_mod(cons, False, self.sps, True, self.eb, False, False)
+ modulated_sync_word_pre = digital.modulate_vector_bc(rxmod.to_basic_block(), self.preamble+self.preamble, [1])
+ modulated_sync_word = modulated_sync_word_pre[86:(512+86)] # compensate for the RRC filter delay
+ corr_max = numpy.abs(numpy.dot(modulated_sync_word,numpy.conj(modulated_sync_word)))
+ corr_calc = self.corr_thresh/(corr_max*corr_max)
+ preamble_symbols = self.map_symbols_to_constellation(self.unpack_values(self.preamble, 8, 2), cons)
+
+ alg = digital.adaptive_algorithm_lms(cons, gain).base()
+ evm = digital.meas_evm_cc(cons, digital.evm_measurement_t_EVM_PERCENT)
+ leq = digital.linear_equalizer(num_taps, self.sps, alg, False, preamble_symbols, 'corr_est')
+ correst = digital.corr_est_cc(modulated_sync_word, self.sps, 12, corr_calc, digital.THRESHOLD_ABSOLUTE)
+ constmod = digital.generic_mod(
+ constellation=cons,
+ differential=False,
+ samples_per_symbol=4,
+ pre_diff_code=True,
+ excess_bw=0.35,
+ verbose=False,
+ log=False)
+ chan = channels.channel_model(
+ noise_voltage=0.0,
+ frequency_offset=0.0,
+ epsilon=1.0,
+ taps=(1.0 + 1.0j, 0.63-.22j, -.1+.07j),
+ noise_seed=0,
+ block_tags=False)
+ vso = blocks.vector_source_b(self.preamble+self.data, True, 1, [])
+ head = blocks.head(gr.sizeof_float*1, num_samp)
+ vsi = blocks.vector_sink_f()
+
+ self.tb.connect(vso, constmod, chan, correst, leq, evm, head, vsi)
+ self.tb.run()
+
+ # look at the last 1000 samples, should converge quickly, below 5% EVM
+ upper_bound = tuple(20.0*numpy.ones((num_test,)))
+ lower_bound = tuple(0.0*numpy.zeros((num_test,)))
+ output_data = vsi.data()
+ output_data = output_data[-num_test:]
+ self.assertLess(output_data, upper_bound)
+ self.assertGreater(output_data, lower_bound)
+
+
+if __name__ == '__main__':
+ gr_unittest.run(qa_linear_equalizer)