summaryrefslogtreecommitdiff
path: root/gr-digital/examples/berawgn.py
diff options
context:
space:
mode:
Diffstat (limited to 'gr-digital/examples/berawgn.py')
-rw-r--r--gr-digital/examples/berawgn.py34
1 files changed, 20 insertions, 14 deletions
diff --git a/gr-digital/examples/berawgn.py b/gr-digital/examples/berawgn.py
index 082b73d83f..31ea8403b0 100644
--- a/gr-digital/examples/berawgn.py
+++ b/gr-digital/examples/berawgn.py
@@ -21,7 +21,6 @@ magnitude below what you chose for N_BITS.
"""
-
import math
import numpy
from gnuradio import gr, digital
@@ -45,20 +44,23 @@ except ImportError:
N_BITS = 1e7
RAND_SEED = 42
+
def berawgn(EbN0):
""" Calculates theoretical bit error rate in AWGN (for BPSK and given Eb/N0) """
return 0.5 * erfc(math.sqrt(10**(float(EbN0) / 10)))
+
class BitErrors(gr.hier_block2):
""" Two inputs: true and received bits. We compare them and
add up the number of incorrect bits. Because integrate_ff()
can only add up a certain number of values, the output is
not a scalar, but a sequence of values, the sum of which is
the BER. """
+
def __init__(self, bits_per_byte):
gr.hier_block2.__init__(self, "BitErrors",
- gr.io_signature(2, 2, gr.sizeof_char),
- gr.io_signature(1, 1, gr.sizeof_int))
+ gr.io_signature(2, 2, gr.sizeof_char),
+ gr.io_signature(1, 1, gr.sizeof_int))
# Bit comparison
comp = blocks.xor_bb()
@@ -74,29 +76,32 @@ class BitErrors(gr.hier_block2):
self)
self.connect((self, 1), (comp, 1))
+
class BERAWGNSimu(gr.top_block):
" This contains the simulation flow graph "
+
def __init__(self, EbN0):
gr.top_block.__init__(self)
self.const = digital.qpsk_constellation()
# Source is N_BITS bits, non-repeated
- data = list(map(int, numpy.random.randint(0, self.const.arity(), N_BITS / self.const.bits_per_symbol())))
- src = blocks.vector_source_b(data, False)
- mod = digital.chunks_to_symbols_bc((self.const.points()), 1)
- add = blocks.add_vcc()
+ data = list(map(int, numpy.random.randint(
+ 0, self.const.arity(), N_BITS / self.const.bits_per_symbol())))
+ src = blocks.vector_source_b(data, False)
+ mod = digital.chunks_to_symbols_bc((self.const.points()), 1)
+ add = blocks.add_vcc()
noise = analog.noise_source_c(analog.GR_GAUSSIAN,
self.EbN0_to_noise_voltage(EbN0),
RAND_SEED)
demod = digital.constellation_decoder_cb(self.const.base())
- ber = BitErrors(self.const.bits_per_symbol())
- self.sink = blocks.vector_sink_f()
+ ber = BitErrors(self.const.bits_per_symbol())
+ self.sink = blocks.vector_sink_f()
self.connect(src, mod, add, demod, ber, self.sink)
self.connect(noise, (add, 1))
self.connect(src, (ber, 1))
def EbN0_to_noise_voltage(self, EbN0):
""" Converts Eb/N0 to a complex noise voltage (assuming unit symbol power) """
- return 1.0 / math.sqrt(self.const.bits_per_symbol( * 10**(float(EbN0) / 10)))
+ return 1.0 / math.sqrt(self.const.bits_per_symbol(* 10**(float(EbN0) / 10)))
def simulate_ber(EbN0):
@@ -106,16 +111,17 @@ def simulate_ber(EbN0):
fg.run()
return numpy.sum(fg.sink.data())
+
if __name__ == "__main__":
EbN0_min = 0
EbN0_max = 15
- EbN0_range = list(range(EbN0_min, EbN0_max+1))
- ber_theory = [berawgn(x) for x in EbN0_range]
+ EbN0_range = list(range(EbN0_min, EbN0_max + 1))
+ ber_theory = [berawgn(x) for x in EbN0_range]
print("Simulating...")
- ber_simu = [simulate_ber(x) for x in EbN0_range]
+ ber_simu = [simulate_ber(x) for x in EbN0_range]
f = pyplot.figure()
- s = f.add_subplot(1,1,1)
+ s = f.add_subplot(1, 1, 1)
s.semilogy(EbN0_range, ber_theory, 'g-.', label="Theoretical")
s.semilogy(EbN0_range, ber_simu, 'b-o', label="Simulated")
s.set_title('BER Simulation')