diff options
Diffstat (limited to 'gr-analog/python/analog/fm_emph.py')
-rw-r--r-- | gr-analog/python/analog/fm_emph.py | 254 |
1 files changed, 206 insertions, 48 deletions
diff --git a/gr-analog/python/analog/fm_emph.py b/gr-analog/python/analog/fm_emph.py index d2a38d4aff..bfa4742ace 100644 --- a/gr-analog/python/analog/fm_emph.py +++ b/gr-analog/python/analog/fm_emph.py @@ -21,17 +21,78 @@ from gnuradio import gr, filter import math +import cmath # -# 1 -# H(s) = ------- -# 1 + s +# An analog deemphasis filter: # -# tau is the RC time constant. -# critical frequency: w_p = 1/tau +# R +# o------/\/\/\/---+----o +# | +# = C +# | +# --- # -# We prewarp and use the bilinear z-transform to get our IIR coefficients. -# See "Digital Signal Processing: A Practical Approach" by Ifeachor and Jervis +# Has this transfer function: +# +# 1 1 +# ---- --- +# RC tau +# H(s) = ---------- = ---------- +# 1 1 +# s + ---- s + --- +# RC tau +# +# And has its -3 dB response, due to the pole, at +# +# |H(j w_c)|^2 = 1/2 => s = j w_c = j (1/(RC)) +# +# Historically, this corner frequency of analog audio deemphasis filters +# been specified by the RC time constant used, called tau. +# So w_c = 1/tau. +# +# FWIW, for standard tau values, some standard analog components would be: +# tau = 75 us = (50K)(1.5 nF) = (50 ohms)(1.5 uF) +# tau = 50 us = (50K)(1.0 nF) = (50 ohms)(1.0 uF) +# +# In specifying tau for this digital deemphasis filter, tau specifies +# the *digital* corner frequency, w_c, desired. +# +# The digital deemphasis filter design below, uses the +# "bilinear transformation" method of designing digital filters: +# +# 1. Convert digitial specifications into the analog domain, by prewarping +# digital frequency specifications into analog frequencies. +# +# w_a = (2/T)tan(wT/2) +# +# 2. Use an analog filter design technique to design the filter. +# +# 3. Use the bilinear transformation to convert the analog filter design to a +# digital filter design. +# +# H(z) = H(s)| +# s = (2/T)(1-z^-1)/(1+z^-1) +# +# +# w_ca 1 1 - (-1) z^-1 +# H(z) = ---- * ----------- * ----------------------- +# 2 fs -w_ca -w_ca +# 1 - ----- 1 + ----- +# 2 fs 2 fs +# 1 - ----------- z^-1 +# -w_ca +# 1 - ----- +# 2 fs +# +# We use this design technique, because it is an easy way to obtain a filter +# design with the -6 dB/octave roll-off required of the deemphasis filter. +# +# Jackson, Leland B., _Digital_Filters_and_Signal_Processing_Second_Edition_, +# Kluwer Academic Publishers, 1989, pp 201-212 +# +# Orfanidis, Sophocles J., _Introduction_to_Signal_Processing_, Prentice Hall, +# 1996, pp 573-583 # @@ -51,15 +112,24 @@ class fm_deemph(gr.hier_block2): gr.io_signature(1, 1, gr.sizeof_float), # Input signature gr.io_signature(1, 1, gr.sizeof_float)) # Output signature - w_p = 1/tau - w_pp = math.tan(w_p / (fs * 2)) # prewarped analog freq + # Digital corner frequency + w_c = 1.0 / tau + + # Prewarped analog corner frequency + w_ca = 2.0 * fs * math.tan(w_c / (2.0 * fs)) - a1 = (w_pp - 1)/(w_pp + 1) - b0 = w_pp/(1 + w_pp) - b1 = b0 + # Resulting digital pole, zero, and gain term from the bilinear + # transformation of H(s) = w_ca / (s + w_ca) to + # H(z) = b0 (1 - z1 z^-1)/(1 - p1 z^-1) + k = -w_ca / (2.0 * fs) + z1 = -1.0 + p1 = (1.0 + k) / (1.0 - k) + b0 = -k / (1.0 - k) - btaps = [b0, b1] - ataps = [1, a1] + btaps = [ b0 * 1.0, b0 * -z1 ] + ataps = [ 1.0, -p1 ] + + # Since H(s = 0) = 1.0, then H(z = 1) = 1.0 and has 0 dB gain at DC if 0: print "btaps =", btaps @@ -67,26 +137,17 @@ class fm_deemph(gr.hier_block2): global plot1 plot1 = gru.gnuplot_freqz(gru.freqz(btaps, ataps), fs, True) - deemph = filter.iir_filter_ffd(btaps, ataps) + deemph = filter.iir_filter_ffd(btaps, ataps, False) self.connect(self, deemph, self) # -# 1 + s*t1 -# H(s) = ---------- -# 1 + s*t2 -# -# I think this is the right transfer function. -# +# An analog preemphasis filter, that flattens out again at the high end: # -# This fine ASCII rendition is based on Figure 5-15 -# in "Digital and Analog Communication Systems", Leon W. Couch II -# -# -# R1 +# C # +-----||------+ # | | # o------+ +-----+--------o -# | C1 | | +# | R1 | | # +----/\/\/\/--+ \ # / # \ R2 @@ -95,28 +156,94 @@ class fm_deemph(gr.hier_block2): # | # o--------------------------+--------o # -# f1 = 1/(2*pi*t1) = 1/(2*pi*R1*C) +# (This fine ASCII rendition is based on Figure 5-15 +# in "Digital and Analog Communication Systems", Leon W. Couch II) +# +# Has this transfer function: # -# 1 R1 + R2 -# f2 = ------- = ------------ -# 2*pi*t2 2*pi*R1*R2*C +# 1 +# s + --- +# R1C +# H(s) = ------------------ +# 1 R1 +# s + --- (1 + --) +# R1C R2 # -# t1 is 75us in US, 50us in EUR -# f2 should be higher than our audio bandwidth. # +# It has a corner due to the numerator, where the rise starts, at # -# The Bode plot looks like this: +# |Hn(j w_cl)|^2 = 2*|Hn(0)|^2 => s = j w_cl = j (1/(R1C)) # +# It has a corner due to the denominator, where it levels off again, at # -# /---------------- -# / -# / <-- slope = 20dB/decade -# / -# -------------/ -# f1 f2 +# |Hn(j w_ch)|^2 = 1/2*|Hd(0)|^2 => s = j w_ch = j (1/(R1C) * (1 + R1/R2)) # -# We prewarp and use the bilinear z-transform to get our IIR coefficients. -# See "Digital Signal Processing: A Practical Approach" by Ifeachor and Jervis +# Historically, the corner frequency of analog audio preemphasis filters +# been specified by the R1C time constant used, called tau. +# +# So +# w_cl = 1/tau = 1/R1C; f_cl = 1/(2*pi*tau) = 1/(2*pi*R1*C) +# w_ch = 1/tau2 = (1+R1/R2)/R1C; f_ch = 1/(2*pi*tau2) = (1+R1/R2)/(2*pi*R1*C) +# +# and note f_ch = f_cl * (1 + R1/R2). +# +# For broadcast FM audio, tau is 75us in the United States and 50us in Europe. +# f_ch should be higher than our digital audio bandwidth. +# +# The Bode plot looks like this: +# +# +# /---------------- +# / +# / <-- slope = 20dB/decade +# / +# -------------/ +# f_cl f_ch +# +# In specifying tau for this digital preemphasis filter, tau specifies +# the *digital* corner frequency, w_cl, desired. +# +# The digital preemphasis filter design below, uses the +# "bilinear transformation" method of designing digital filters: +# +# 1. Convert digitial specifications into the analog domain, by prewarping +# digital frequency specifications into analog frequencies. +# +# w_a = (2/T)tan(wT/2) +# +# 2. Use an analog filter design technique to design the filter. +# +# 3. Use the bilinear transformation to convert the analog filter design to a +# digital filter design. +# +# H(z) = H(s)| +# s = (2/T)(1-z^-1)/(1+z^-1) +# +# +# -w_cla +# 1 + ------ +# 2 fs +# 1 - ------------ z^-1 +# -w_cla -w_cla +# 1 - ------ 1 - ------ +# 2 fs 2 fs +# H(z) = ------------ * ----------------------- +# -w_cha -w_cha +# 1 - ------ 1 + ------ +# 2 fs 2 fs +# 1 - ------------ z^-1 +# -w_cha +# 1 - ------ +# 2 fs +# +# We use this design technique, because it is an easy way to obtain a filter +# design with the 6 dB/octave rise required of the premphasis filter. +# +# Jackson, Leland B., _Digital_Filters_and_Signal_Processing_Second_Edition_, +# Kluwer Academic Publishers, 1989, pp 201-212 +# +# Orfanidis, Sophocles J., _Introduction_to_Signal_Processing_, Prentice Hall, +# 1996, pp 573-583 # @@ -124,21 +251,52 @@ class fm_preemph(gr.hier_block2): """ FM Preemphasis IIR filter. """ - def __init__(self, fs, tau=75e-6): + def __init__(self, fs, tau=75e-6, fh=-1.0): """ Args: fs: sampling frequency in Hz (float) tau: Time constant in seconds (75us in US, 50us in EUR) (float) + fh: High frequency at which to flatten out (< 0 means default of 0.925*fs/2.0) (float) """ - gr.hier_block2.__init__(self, "fm_deemph", + gr.hier_block2.__init__(self, "fm_preemph", gr.io_signature(1, 1, gr.sizeof_float), # Input signature gr.io_signature(1, 1, gr.sizeof_float)) # Output signature - # FIXME make this compute the right answer + # Set fh to something sensible, if needed. + # N.B. fh == fs/2.0 or fh == 0.0 results in a pole on the unit circle + # at z = -1.0 or z = 1.0 respectively. That makes the filter unstable + # and useless. + if fh <= 0.0 or fh >= fs/2.0: + fh = 0.925 * fs/2.0 + + # Digital corner frequencies + w_cl = 1.0 / tau + w_ch = 2.0 * math.pi * fh + + # Prewarped analog corner frequencies + w_cla = 2.0 * fs * math.tan(w_cl / (2.0 * fs)) + w_cha = 2.0 * fs * math.tan(w_ch / (2.0 * fs)) + + # Resulting digital pole, zero, and gain term from the bilinear + # transformation of H(s) = (s + w_cla) / (s + w_cha) to + # H(z) = b0 (1 - z1 z^-1)/(1 - p1 z^-1) + kl = -w_cla / (2.0 * fs) + kh = -w_cha / (2.0 * fs) + z1 = (1.0 + kl) / (1.0 - kl) + p1 = (1.0 + kh) / (1.0 - kh) + b0 = (1.0 - kl) / (1.0 - kh) + + # Since H(s = infinity) = 1.0, then H(z = -1) = 1.0 and + # this filter has 0 dB gain at fs/2.0. + # That isn't what users are going to expect, so adjust with a + # gain, g, so that H(z = 1) = 1.0 for 0 dB gain at DC. + w_0dB = 2.0 * math.pi * 0.0 + g = abs(1.0 - p1 * cmath.rect(1.0, -w_0dB)) \ + / (b0 * abs(1.0 - z1 * cmath.rect(1.0, -w_0dB))) - btaps = [1] - ataps = [1] + btaps = [ g * b0 * 1.0, g * b0 * -z1 ] + ataps = [ 1.0, -p1 ] if 0: print "btaps =", btaps @@ -146,5 +304,5 @@ class fm_preemph(gr.hier_block2): global plot2 plot2 = gru.gnuplot_freqz(gru.freqz(btaps, ataps), fs, True) - preemph = filter.iir_filter_ffd(btaps, ataps) + preemph = filter.iir_filter_ffd(btaps, ataps, False) self.connect(self, preemph, self) |