summaryrefslogtreecommitdiff
path: root/gnuradio-core/src/python/gnuradio/window.py
diff options
context:
space:
mode:
Diffstat (limited to 'gnuradio-core/src/python/gnuradio/window.py')
-rw-r--r--gnuradio-core/src/python/gnuradio/window.py190
1 files changed, 190 insertions, 0 deletions
diff --git a/gnuradio-core/src/python/gnuradio/window.py b/gnuradio-core/src/python/gnuradio/window.py
new file mode 100644
index 0000000000..391b83c375
--- /dev/null
+++ b/gnuradio-core/src/python/gnuradio/window.py
@@ -0,0 +1,190 @@
+#
+# Copyright 2004,2005 Free Software Foundation, Inc.
+#
+# This file is part of GNU Radio
+#
+# GNU Radio is free software; you can redistribute it and/or modify
+# it under the terms of the GNU General Public License as published by
+# the Free Software Foundation; either version 2, or (at your option)
+# any later version.
+#
+# GNU Radio is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+# GNU General Public License for more details.
+#
+# You should have received a copy of the GNU General Public License
+# along with GNU Radio; see the file COPYING. If not, write to
+# the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
+# Boston, MA 02111-1307, USA.
+#
+
+'''
+Routines for designing window functions.
+'''
+
+import math
+from gnuradio import gr
+
+def izero(x):
+ izeroepsilon = 1e-21
+ halfx = x/2.0
+ accum = u = n = 1
+ while 1:
+ temp = halfx/n
+ n += 1
+ temp *= temp
+ u *= temp
+ accum += u
+ if u >= IzeroEPSILON*sum:
+ break
+ return accum
+
+def midm1(fft_size):
+ return (fft_size - 1)/2
+
+def midp1(fft_size):
+ return (fft_size+1)/2
+
+def freq(fft_size):
+ return 2.0*math.pi/fft_size
+
+def rate(fft_size):
+ return 1.0/(fft_size >> 1)
+
+def expn(fft_size):
+ math.log(2.0)/(midn(fft_size) + 1.0)
+
+def hamming(fft_size):
+ window = []
+ for index in xrange(fft_size):
+ window.append(0.54 - 0.46 * math.cos (2 * math.pi / fft_size * index)) # Hamming window
+ return window
+
+def hanning(fft_size):
+ window = []
+ for index in xrange(fft_size):
+ window.append(0.5 - 0.5 * math.cos (2 * math.pi / fft_size * index)) # von Hann window
+ return window
+
+def welch(fft_size):
+ window = [0 for i in range(fft_size)]
+ j = fft_size-1
+ for index in xrange(midn(fft_size)+1):
+ window[j] = window[index] = (1.0 - math.sqrt((index - midm1(fft_size)) / midp1(fft_size)))
+ j -= 1
+ return window
+
+def parzen(fft_size):
+ window = [0 for i in range(fft_size)]
+ j = fft_size-1
+ for index in xrange(midn(fft_size)+1):
+ window[j] = window[index] = (1.0 - math.abs((index - midm1(fft_size)) / midp1(fft_size)))
+ j -= 1
+ return window
+
+def bartlett(fft_size):
+ mfrq = freq(fft_size)
+ angle = 0
+ window = [0 for i in range(fft_size)]
+ j = fft_size-1
+ for index in xrange(midn(fft_size)+1):
+ window[j] = window[index] = angle
+ angle += freq
+ j -= 1
+ return window
+
+def blackman2(fft_size):
+ mfrq = freq(fft_size)
+ angle = 0
+ window = [0 for i in range(fft_size)]
+ j = fft_size-1
+ for index in xrange(midn(fft_size)+1):
+ cx = math.cos(angle)
+ window[j] = window[index] = (.34401 + (cx * (-.49755 + (cx * .15844))))
+ angle += freq
+ j -= 1
+ return window
+
+def blackman3(fft_size):
+ mfrq = freq(fft_size)
+ angle = 0
+ window = [0 for i in range(fft_size)]
+ j = fft_size-1
+ for index in xrange(midn(fft_size)+1):
+ cx = math.cos(angle)
+ window[j] = window[index] = (.21747 + (cx * (-.45325 + (cx * (.28256 - (cx * .04672))))))
+ angle += freq
+ j -= 1
+ return window
+
+def blackman4(fft_size):
+ mfrq = freq(fft_size)
+ angle = 0
+ window = [0 for i in range(fft_size)]
+ j = fft_size-1
+ for index in xrange(midn(fft_size)+1):
+ cx = math.cos(angle)
+ window[j] = window[index] = (.084037 + (cx * (-.29145 + (cx * (.375696 + (cx * (-.20762 + (cx * .041194))))))))
+ angle += freq
+ j -= 1
+ return window
+
+def exponential(fft_size):
+ expsum = 1.0
+ window = [0 for i in range(fft_size)]
+ j = fft_size-1
+ for index in xrange(midn(fft_size)+1):
+ window[j] = window[i] = (expsum - 1.0)
+ expsum *= expn(fft_size)
+ j -= 1
+ return window
+
+def riemann(fft_size):
+ sr1 = freq(fft_size)
+ window = [0 for i in range(fft_size)]
+ j = fft_size-1
+ for index in xrange(midn(fft_size)):
+ if index == midn(fft_size):
+ window[index] = window[j] = 1.0
+ else:
+ cx = sr1*midn(fft_size) - index
+ window[index] = window[j] = math.sin(cx)/cx
+ j -= 1
+ return window
+
+def blackmanharris(fft_size):
+ a0 = 0.35875
+ a1 = 0.48829
+ a2 = 0.14128
+ a3 = 0.01168
+ window = [0 for i in range(fft_size)]
+ for index in xrange(fft_size):
+ window[index] = a0
+ window[index] -= a1*math.cos(2.0*math.pi*(index+0.5)/(fft_size - 1))
+ window[index] += a2*math.cos(4.0*math.pi*(index+0.5)/(fft_size - 1))
+ window[index] -= a3*math.cos(6.0*math.pi*(index+0.5)/(fft_size - 1))
+ return window
+
+def nuttall(fft_size):
+ a0 = 0.3635819
+ a1 = 0.4891775
+ a2 = 0.1365995
+ a3 = 0.0106411
+ window = [0 for i in range(fft_size)]
+ for index in xrange(fft_size):
+ window[index] = a0
+ window[index] -= a1*math.cos(2.0*math.pi*(index+0.5)/(fft_size - 1))
+ window[index] += a2*math.cos(4.0*math.pi*(index+0.5)/(fft_size - 1))
+ window[index] -= a3*math.cos(6.0*math.pi*(index+0.5)/(fft_size - 1))
+ return window
+
+def kaiser(fft_size,beta):
+ ibeta = 1.0/izero(beta)
+ inm1 = 1.0/(fft_size)
+ window = [0 for i in range(fft_size)]
+ for index in xrange(fft_size):
+ window[index] = izero(beta*math.sqrt(1.0 - (index * inm1)*(index * inm1))) * ibeta
+ return window
+
+