summaryrefslogtreecommitdiff
path: root/gnuradio-core/src/lib/general/gr_constellation.cc
diff options
context:
space:
mode:
Diffstat (limited to 'gnuradio-core/src/lib/general/gr_constellation.cc')
-rw-r--r--gnuradio-core/src/lib/general/gr_constellation.cc183
1 files changed, 133 insertions, 50 deletions
diff --git a/gnuradio-core/src/lib/general/gr_constellation.cc b/gnuradio-core/src/lib/general/gr_constellation.cc
index 27590bf821..69b6e1bdc8 100644
--- a/gnuradio-core/src/lib/general/gr_constellation.cc
+++ b/gnuradio-core/src/lib/general/gr_constellation.cc
@@ -34,20 +34,14 @@
#define M_TWOPI (2*M_PI)
#define SQRT_TWO 0.707107
-gr_constellation_sptr
-gr_make_constellation(std::vector<gr_complex> constellation, std::vector<unsigned int> pre_diff_code,
- unsigned int rotational_symmetry)
-{
- return gr_constellation_sptr(new gr_constellation (constellation, pre_diff_code, rotational_symmetry));
-}
-
// Base Constellation Class
gr_constellation::gr_constellation (std::vector<gr_complex> constellation, std::vector<unsigned int> pre_diff_code,
- unsigned int rotational_symmetry) :
+ unsigned int rotational_symmetry, unsigned int dimensionality) :
d_constellation(constellation),
d_pre_diff_code(pre_diff_code),
- d_rotational_symmetry(rotational_symmetry)
+ d_rotational_symmetry(rotational_symmetry),
+ d_dimensionality(dimensionality)
{
if (pre_diff_code.size() == 0)
d_apply_pre_diff_code = false;
@@ -55,25 +49,48 @@ gr_constellation::gr_constellation (std::vector<gr_complex> constellation, std::
throw std::runtime_error ("The constellation and pre-diff code must be of the same length.");
else
d_apply_pre_diff_code = true;
+ calc_arity();
}
gr_constellation::gr_constellation () :
d_apply_pre_diff_code(false),
- d_rotational_symmetry(0)
+ d_rotational_symmetry(0),
+ d_dimensionality(1)
{
+ calc_arity();
+}
+
+//! Returns the constellation points for a symbol value
+void gr_constellation::map_to_points(unsigned int value, gr_complex *points) {
+ for (unsigned int i=0; i<d_dimensionality; i++)
+ points[i] = d_constellation[value*d_dimensionality + i];
+}
+
+std::vector<gr_complex> gr_constellation::map_to_points_v(unsigned int value) {
+ std::vector<gr_complex> points_v;
+ points_v.resize(d_dimensionality);
+ map_to_points(value, &(points_v[0]));
+ return points_v;
+}
+
+float gr_constellation::get_distance(unsigned int index, const gr_complex *sample) {
+ float dist = 0;
+ for (unsigned int i=0; i<d_dimensionality; i++) {
+ dist += norm(sample[i] - d_constellation[index*d_dimensionality + i]);
+ }
+ return dist;
}
-unsigned int get_closest_point(std::vector<gr_complex> constellation, gr_complex sample) {
+unsigned int gr_constellation::get_closest_point(const gr_complex *sample) {
- unsigned int table_size = constellation.size();
unsigned int min_index = 0;
float min_euclid_dist;
float euclid_dist;
- min_euclid_dist = norm(sample - constellation[0]);
- min_index = 0;
- for (unsigned int j = 1; j < table_size; j++){
- euclid_dist = norm(sample - constellation[j]);
+ min_euclid_dist = get_distance(0, sample);
+ min_index = 0;
+ for (unsigned int j = 1; j < d_arity; j++){
+ euclid_dist = get_distance(j, sample);
if (euclid_dist < min_euclid_dist){
min_euclid_dist = euclid_dist;
min_index = j;
@@ -82,16 +99,48 @@ unsigned int get_closest_point(std::vector<gr_complex> constellation, gr_complex
return min_index;
}
-// Chooses points base on shortest distance.
-// Inefficient.
-unsigned int gr_constellation::decision_maker(gr_complex sample)
+unsigned int gr_constellation::decision_maker_pe(const gr_complex *sample, float *phase_error)
{
- unsigned int min_index;
- min_index = get_closest_point(d_constellation, sample);
- return min_index;
+ unsigned int index = decision_maker(sample);
+ *phase_error = 0;
+ for (unsigned int d=0; d<d_dimensionality; d++)
+ *phase_error += -arg(sample[d]*conj(d_constellation[index+d]));
+ return index;
}
-void gr_constellation::calc_metric(gr_complex sample, float *metric, trellis_metric_type_t type) {
+/*
+unsigned int gr_constellation::decision_maker_e(const gr_complex *sample, float *error)
+{
+ unsigned int index = decision_maker(sample);
+ *error = 0;
+ for (unsigned int d=0; d<d_dimensionality; d++)
+ *error += sample[d]*conj(d_constellation[index+d]);
+ return index;
+}
+*/
+
+std::vector<gr_complex> gr_constellation::s_points () {
+ if (d_dimensionality != 1)
+ throw std::runtime_error ("s_points only works for dimensionality 1 constellations.");
+ else
+ return d_constellation;
+}
+
+std::vector<std::vector<gr_complex> > gr_constellation::v_points () {
+ std::vector<std::vector<gr_complex> > vv_const;
+ vv_const.resize(d_arity);
+ for (unsigned int p=0; p<d_arity; p++) {
+ std::vector<gr_complex> v_const;
+ v_const.resize(d_dimensionality);
+ for (unsigned int d=0; d<d_dimensionality; d++) {
+ v_const[d] = d_constellation[p*d_dimensionality+d];
+ }
+ vv_const[p] = v_const;
+ }
+ return vv_const;
+}
+
+void gr_constellation::calc_metric(const gr_complex *sample, float *metric, trellis_metric_type_t type) {
switch (type){
case TRELLIS_EUCLIDEAN:
calc_euclidean_metric(sample, metric);
@@ -107,39 +156,71 @@ void gr_constellation::calc_metric(gr_complex sample, float *metric, trellis_met
}
}
-void gr_constellation::calc_euclidean_metric(gr_complex sample, float *metric) {
- for (int o=0; o<d_constellation.size(); o++) {
- gr_complex s = sample - d_constellation[o];
- metric[o] = s.real()*s.real()+s.imag()*s.imag();
+void gr_constellation::calc_euclidean_metric(const gr_complex *sample, float *metric) {
+ for (unsigned int o=0; o<d_arity; o++) {
+ metric[o] = get_distance(o, sample);
}
}
-void gr_constellation::calc_hard_symbol_metric(gr_complex sample, float *metric){
+void gr_constellation::calc_hard_symbol_metric(const gr_complex *sample, float *metric){
float minm = FLT_MAX;
- int minmi = 0;
- for (int o=0; o<d_constellation.size(); o++) {
- gr_complex s = sample - d_constellation[o];
- float dist = s.real()*s.real()+s.imag()*s.imag();
+ unsigned int minmi = 0;
+ for (unsigned int o=0; o<d_arity; o++) {
+ float dist = get_distance(o, sample);
if (dist < minm) {
minm = dist;
minmi = o;
}
}
- for(int o=0; o<d_constellation.size(); o++) {
+ for(unsigned int o=0; o<d_arity; o++) {
metric[o] = (o==minmi?0.0:1.0);
}
}
+void gr_constellation::calc_arity () {
+ if (d_constellation.size() % d_dimensionality != 0)
+ throw std::runtime_error ("Constellation vector size must be a multiple of the dimensionality.");
+ d_arity = d_constellation.size()/d_dimensionality;
+}
+
+unsigned int gr_constellation::decision_maker_v (std::vector<gr_complex> sample) {
+ assert(sample.size() == d_dimensionality);
+ return decision_maker (&(sample[0]));
+}
+
+gr_constellation_calcdist_sptr
+gr_make_constellation_calcdist(std::vector<gr_complex> constellation, std::vector<unsigned int> pre_diff_code,
+ unsigned int rotational_symmetry, unsigned int dimensionality)
+{
+ return gr_constellation_calcdist_sptr(new gr_constellation_calcdist (constellation, pre_diff_code, rotational_symmetry,
+ dimensionality));
+}
+
+gr_constellation_calcdist::gr_constellation_calcdist(std::vector<gr_complex> constellation,
+ std::vector<unsigned int> pre_diff_code,
+ unsigned int rotational_symmetry,
+ unsigned int dimensionality) :
+ gr_constellation(constellation, pre_diff_code, rotational_symmetry, dimensionality)
+{}
+
+// Chooses points base on shortest distance.
+// Inefficient.
+unsigned int gr_constellation_calcdist::decision_maker(const gr_complex *sample)
+{
+ return get_closest_point(sample);
+}
+
gr_constellation_sector::gr_constellation_sector (std::vector<gr_complex> constellation,
std::vector<unsigned int> pre_diff_code,
unsigned int rotational_symmetry,
+ unsigned int dimensionality,
unsigned int n_sectors) :
- gr_constellation(constellation, pre_diff_code, rotational_symmetry),
+ gr_constellation(constellation, pre_diff_code, rotational_symmetry, dimensionality),
n_sectors(n_sectors)
{
}
-unsigned int gr_constellation_sector::decision_maker (gr_complex sample) {
+unsigned int gr_constellation_sector::decision_maker (const gr_complex *sample) {
unsigned int sector;
sector = get_sector(sample);
return sector_values[sector];
@@ -170,20 +251,20 @@ gr_constellation_rect::gr_constellation_rect (std::vector<gr_complex> constellat
unsigned int rotational_symmetry,
unsigned int real_sectors, unsigned int imag_sectors,
float width_real_sectors, float width_imag_sectors) :
- gr_constellation_sector(constellation, pre_diff_code, rotational_symmetry, real_sectors * imag_sectors),
+ gr_constellation_sector(constellation, pre_diff_code, rotational_symmetry, 1, real_sectors * imag_sectors),
n_real_sectors(real_sectors), n_imag_sectors(imag_sectors),
d_width_real_sectors(width_real_sectors), d_width_imag_sectors(width_imag_sectors)
{
find_sector_values();
}
-unsigned int gr_constellation_rect::get_sector (gr_complex sample) {
+unsigned int gr_constellation_rect::get_sector (const gr_complex *sample) {
int real_sector, imag_sector;
unsigned int sector;
- real_sector = int(real(sample)/d_width_real_sectors + n_real_sectors/2.0);
+ real_sector = int(real(*sample)/d_width_real_sectors + n_real_sectors/2.0);
if (real_sector < 0) real_sector = 0;
if (real_sector >= n_real_sectors) real_sector = n_real_sectors-1;
- imag_sector = int(imag(sample)/d_width_imag_sectors + n_imag_sectors/2.0);
+ imag_sector = int(imag(*sample)/d_width_imag_sectors + n_imag_sectors/2.0);
if (imag_sector < 0) imag_sector = 0;
if (imag_sector >= n_imag_sectors) imag_sector = n_imag_sectors-1;
sector = real_sector * n_imag_sectors + imag_sector;
@@ -198,7 +279,7 @@ unsigned int gr_constellation_rect::calc_sector_value (unsigned int sector) {
imag_sector = sector - real_sector * n_imag_sectors;
sector_center = gr_complex((real_sector + 0.5 - n_real_sectors/2.0) * d_width_real_sectors,
(imag_sector + 0.5 - n_imag_sectors/2.0) * d_width_imag_sectors);
- closest_point = get_closest_point(d_constellation, sector_center);
+ closest_point = get_closest_point(&sector_center);
return closest_point;
}
@@ -215,27 +296,25 @@ gr_make_constellation_psk(std::vector<gr_complex> constellation,
gr_constellation_psk::gr_constellation_psk (std::vector<gr_complex> constellation,
std::vector<unsigned int> pre_diff_code,
unsigned int n_sectors) :
- gr_constellation_sector(constellation, pre_diff_code, constellation.size(), n_sectors)
+ gr_constellation_sector(constellation, pre_diff_code, constellation.size(), 1, n_sectors)
{
find_sector_values();
}
-unsigned int gr_constellation_psk::get_sector (gr_complex sample) {
- float phase = arg(sample);
+unsigned int gr_constellation_psk::get_sector (const gr_complex *sample) {
+ float phase = arg(*sample);
float width = M_TWOPI / n_sectors;
int sector = floor(phase/width + 0.5);
unsigned int u_sector;
if (sector < 0) sector += n_sectors;
u_sector = sector;
- // std::cout << phase << " " << width << " " << sector << std::endl;
return sector;
}
unsigned int gr_constellation_psk::calc_sector_value (unsigned int sector) {
float phase = sector * M_TWOPI / n_sectors;
gr_complex sector_center = gr_complex(cos(phase), sin(phase));
- unsigned int closest_point = get_closest_point(d_constellation, sector_center);
- // std::cout << phase << " " << sector_center << " " << closest_point << std::endl;
+ unsigned int closest_point = get_closest_point(&sector_center);
return closest_point;
}
@@ -252,11 +331,13 @@ gr_constellation_bpsk::gr_constellation_bpsk ()
d_constellation[0] = gr_complex(-1, 0);
d_constellation[1] = gr_complex(1, 0);
d_rotational_symmetry = 2;
+ d_dimensionality = 1;
+ calc_arity();
}
-unsigned int gr_constellation_bpsk::decision_maker(gr_complex sample)
+unsigned int gr_constellation_bpsk::decision_maker(const gr_complex *sample)
{
- return (real(sample) > 0);
+ return (real(*sample) > 0);
}
@@ -275,11 +356,13 @@ gr_constellation_qpsk::gr_constellation_qpsk ()
d_constellation[2] = gr_complex(-SQRT_TWO, SQRT_TWO);
d_constellation[3] = gr_complex(SQRT_TWO, SQRT_TWO);
d_rotational_symmetry = 4;
+ d_dimensionality = 1;
+ calc_arity();
}
-unsigned int gr_constellation_qpsk::decision_maker(gr_complex sample)
+unsigned int gr_constellation_qpsk::decision_maker(const gr_complex *sample)
{
// Real component determines small bit.
// Imag component determines big bit.
- return 2*(imag(sample)>0) + (real(sample)>0);
+ return 2*(imag(*sample)>0) + (real(*sample)>0);
}