diff options
Diffstat (limited to 'gnuradio-core/src/examples/pfb/interpolate.py')
-rwxr-xr-x | gnuradio-core/src/examples/pfb/interpolate.py | 42 |
1 files changed, 21 insertions, 21 deletions
diff --git a/gnuradio-core/src/examples/pfb/interpolate.py b/gnuradio-core/src/examples/pfb/interpolate.py index 370cf26a72..98068f220b 100755 --- a/gnuradio-core/src/examples/pfb/interpolate.py +++ b/gnuradio-core/src/examples/pfb/interpolate.py @@ -1,24 +1,24 @@ #!/usr/bin/env python # # Copyright 2009 Free Software Foundation, Inc. -# +# # This file is part of GNU Radio -# +# # GNU Radio is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 3, or (at your option) # any later version. -# +# # GNU Radio is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. -# +# # You should have received a copy of the GNU General Public License # along with GNU Radio; see the file COPYING. If not, write to # the Free Software Foundation, Inc., 51 Franklin Street, # Boston, MA 02110-1301, USA. -# +# from gnuradio import gr, blks2 import sys, time @@ -46,13 +46,13 @@ class pfb_top_block(gr.top_block): self._interp = 5 # Interpolation rate for PFB interpolator self._ainterp = 5.5 # Resampling rate for the PFB arbitrary resampler - # Frequencies of the signals we construct + # Frequencies of the signals we construct freq1 = 100 freq2 = 200 # Create a set of taps for the PFB interpolator # This is based on the post-interpolation sample rate - self._taps = gr.firdes.low_pass_2(self._interp, self._interp*self._fs, freq2+50, 50, + self._taps = gr.firdes.low_pass_2(self._interp, self._interp*self._fs, freq2+50, 50, attenuation_dB=120, window=gr.firdes.WIN_BLACKMAN_hARRIS) # Create a set of taps for the PFB arbitrary resampler @@ -61,7 +61,7 @@ class pfb_top_block(gr.top_block): # The taps in this filter are based on a sampling rate of the filter size since it acts # internally as an interpolator. flt_size = 32 - self._taps2 = gr.firdes.low_pass_2(flt_size, flt_size*self._fs, freq2+50, 150, + self._taps2 = gr.firdes.low_pass_2(flt_size, flt_size*self._fs, freq2+50, 150, attenuation_dB=120, window=gr.firdes.WIN_BLACKMAN_hARRIS) # Calculate the number of taps per channel for our own information @@ -74,7 +74,7 @@ class pfb_top_block(gr.top_block): self.signal1 = gr.sig_source_c(self._fs, gr.GR_SIN_WAVE, freq1, 0.5) self.signal2 = gr.sig_source_c(self._fs, gr.GR_SIN_WAVE, freq2, 0.5) self.signal = gr.add_cc() - + self.head = gr.head(gr.sizeof_gr_complex, self._N) # Construct the PFB interpolator filter @@ -86,7 +86,7 @@ class pfb_top_block(gr.top_block): #self.pfb_ar.pfb.print_taps() #self.pfb.pfb.print_taps() - + # Connect the blocks self.connect(self.signal1, self.head, (self.signal,0)) self.connect(self.signal2, (self.signal,1)) @@ -99,7 +99,7 @@ class pfb_top_block(gr.top_block): self.snk2 = gr.vector_sink_c() self.connect(self.pfb, self.snk1) self.connect(self.pfb_ar, self.snk2) - + def main(): tb = pfb_top_block() @@ -114,7 +114,7 @@ def main(): fig1 = pylab.figure(1, figsize=(12,10), facecolor="w") fig2 = pylab.figure(2, figsize=(12,10), facecolor="w") fig3 = pylab.figure(3, figsize=(12,10), facecolor="w") - + Ns = 10000 Ne = 10000 @@ -133,8 +133,8 @@ def main(): X_in = 10.0*scipy.log10(abs(fftpack.fftshift(X))) f_in = scipy.arange(-fs/2.0, fs/2.0, fs/float(X_in.size)) p1_f = sp1_f.plot(f_in, X_in, "b") - sp1_f.set_xlim([min(f_in), max(f_in)+1]) - sp1_f.set_ylim([-200.0, 50.0]) + sp1_f.set_xlim([min(f_in), max(f_in)+1]) + sp1_f.set_ylim([-200.0, 50.0]) sp1_f.set_title("Input Signal", weight="bold") @@ -143,7 +143,7 @@ def main(): Ts = 1.0/fs Tmax = len(d)*Ts - + t_in = scipy.arange(0, Tmax, Ts) x_in = scipy.array(d) sp1_t = fig1.add_subplot(2, 1, 2) @@ -167,8 +167,8 @@ def main(): X_o = 10.0*scipy.log10(abs(fftpack.fftshift(X))) f_o = scipy.arange(-fs_int/2.0, fs_int/2.0, fs_int/float(X_o.size)) p2_f = sp2_f.plot(f_o, X_o, "b") - sp2_f.set_xlim([min(f_o), max(f_o)+1]) - sp2_f.set_ylim([-200.0, 50.0]) + sp2_f.set_xlim([min(f_o), max(f_o)+1]) + sp2_f.set_ylim([-200.0, 50.0]) sp2_f.set_title("Output Signal from PFB Interpolator", weight="bold") sp2_f.set_xlabel("Frequency (Hz)") @@ -200,8 +200,8 @@ def main(): X_o = 10.0*scipy.log10(abs(fftpack.fftshift(X))) f_o = scipy.arange(-fs_aint/2.0, fs_aint/2.0, fs_aint/float(X_o.size)) p3_f = sp3_f.plot(f_o, X_o, "b") - sp3_f.set_xlim([min(f_o), max(f_o)+1]) - sp3_f.set_ylim([-200.0, 50.0]) + sp3_f.set_xlim([min(f_o), max(f_o)+1]) + sp3_f.set_ylim([-200.0, 50.0]) sp3_f.set_title("Output Signal from PFB Arbitrary Resampler", weight="bold") sp3_f.set_xlabel("Frequency (Hz)") @@ -217,7 +217,7 @@ def main(): p3_f = sp3_f.plot(t_o, x_o1.real, "m-o") #p3_f = sp3_f.plot(t_o, x_o2.imag, "r-o") sp3_f.set_ylim([-2.5, 2.5]) - + sp3_f.set_title("Output Signal from PFB Arbitrary Resampler", weight="bold") sp3_f.set_xlabel("Time (s)") sp3_f.set_ylabel("Amplitude") @@ -230,4 +230,4 @@ if __name__ == "__main__": main() except KeyboardInterrupt: pass - + |