diff options
author | Marcus Müller <marcus@hostalia.de> | 2018-08-24 23:00:55 +0200 |
---|---|---|
committer | Marcus Müller <marcus@hostalia.de> | 2018-11-02 22:15:53 +0100 |
commit | 797994a11ac5ec6bee9ea01c092947d0c34115f1 (patch) | |
tree | 7381f53008ba56e6b93398fa92be482d12da4f43 /gr-utils/python/utils/plot_data.py | |
parent | e07751acc8424f4dd987f79c32dd247ed347902c (diff) |
Replace scipy/pylab where numpy/pyplot is sufficient
This should reduce the number of times users are prompted to install
pylab || scipy when they'd actually get away with functionality fully
contained in numpy and matplotlib.
This only solves the obvious cases. There's some usage of `pylab.mlab`
that would need more than 20s of consideration.
Diffstat (limited to 'gr-utils/python/utils/plot_data.py')
-rw-r--r-- | gr-utils/python/utils/plot_data.py | 19 |
1 files changed, 4 insertions, 15 deletions
diff --git a/gr-utils/python/utils/plot_data.py b/gr-utils/python/utils/plot_data.py index a054147114..dc9346c484 100644 --- a/gr-utils/python/utils/plot_data.py +++ b/gr-utils/python/utils/plot_data.py @@ -26,18 +26,7 @@ from __future__ import print_function from __future__ import division from __future__ import unicode_literals -try: - import scipy -except ImportError: - print("Please install SciPy to run this script (http://www.scipy.org/)") - raise SystemExit(1) - -try: - from pylab import * -except ImportError: - print("Please install Matplotlib to run this script (http://matplotlib.sourceforge.net/)") - raise SystemExit(1) - +import numpy class plot_data(object): def __init__(self, datatype, filenames, options): @@ -88,12 +77,12 @@ class plot_data(object): def get_data(self, hfile): self.text_file_pos.set_text("File Position: %d" % (hfile.tell()//self.sizeof_data)) try: - f = scipy.fromfile(hfile, dtype=self.datatype, count=self.block_length) + f = numpy.fromfile(hfile, dtype=self.datatype, count=self.block_length) except MemoryError: print("End of File") else: - self.f = scipy.array(f) - self.time = scipy.array([i*(1 / self.sample_rate) for i in range(len(self.f))]) + self.f = numpy.array(f) + self.time = numpy.array([i*(1 / self.sample_rate) for i in range(len(self.f))]) def make_plots(self): self.sp_f = self.fig.add_subplot(2,1,1, position=[0.075, 0.2, 0.875, 0.6]) |