summaryrefslogtreecommitdiff
path: root/gr-trellis/src/examples/python/test_turbo_equalization2.py
diff options
context:
space:
mode:
authorTom Rondeau <trondeau@vt.edu>2012-04-13 18:36:53 -0400
committerTom Rondeau <trondeau@vt.edu>2012-04-13 18:36:53 -0400
commitf919f9dcbb54a08e6e26d6c229ce92fb784fa1b2 (patch)
tree7e846386b9eb1676f9a93fc4a1e55916b9accc97 /gr-trellis/src/examples/python/test_turbo_equalization2.py
parent6a1e9783fec6ed827f49db27c171591d30f32933 (diff)
Removed whitespace and added dtools/bin/remove-whitespace as a tool to do this in the future.
The sed script was provided by Moritz Fischer.
Diffstat (limited to 'gr-trellis/src/examples/python/test_turbo_equalization2.py')
-rwxr-xr-xgr-trellis/src/examples/python/test_turbo_equalization2.py14
1 files changed, 7 insertions, 7 deletions
diff --git a/gr-trellis/src/examples/python/test_turbo_equalization2.py b/gr-trellis/src/examples/python/test_turbo_equalization2.py
index 7e4341cba3..5a6c77e9d4 100755
--- a/gr-trellis/src/examples/python/test_turbo_equalization2.py
+++ b/gr-trellis/src/examples/python/test_turbo_equalization2.py
@@ -65,17 +65,17 @@ def run_test (fo,fi,interleaver,Kb,bitspersymbol,K,channel,modulation,dimensiona
isi = gr.fir_filter_fff(1,channel)
add = gr.add_ff()
noise = gr.noise_source_f(gr.GR_GAUSSIAN,math.sqrt(N0/2),seed)
-
+
# RX
- (head,tail) = make_rx(tb,fo,fi,dimensionality,tot_constellation,K,interleaver,IT,Es,N0,trellis.TRELLIS_MIN_SUM)
- dst = gr.vector_sink_s();
-
+ (head,tail) = make_rx(tb,fo,fi,dimensionality,tot_constellation,K,interleaver,IT,Es,N0,trellis.TRELLIS_MIN_SUM)
+ dst = gr.vector_sink_s();
+
tb.connect (src,enc_out,inter,mod)
tb.connect (mod,isi,(add,0))
tb.connect (noise,(add,1))
tb.connect (add,head)
tb.connect (tail,dst)
-
+
tb.run()
data = dst.data()
@@ -86,7 +86,7 @@ def run_test (fo,fi,interleaver,Kb,bitspersymbol,K,channel,modulation,dimensiona
nright=nright+1
#else:
#print "Error in ", i
-
+
return (ntotal,ntotal-nright)
@@ -117,7 +117,7 @@ def main(args):
tot_channel = fsm_utils.make_isi_lookup(modulation,channel,True) # generate the lookup table (normalize energy to 1)
dimensionality = tot_channel[0]
N0=pow(10.0,-esn0_db/10.0); # noise variance
- tot_constellation =[0]*len(tot_channel[1])
+ tot_constellation =[0]*len(tot_channel[1])
for i in range(len(tot_channel[1])):
tot_constellation[i] = tot_channel[1][i] * math.sqrt(1.0/N0)
if len(tot_constellation)/dimensionality != fi.O():