diff options
author | Tom Rondeau <trondeau@vt.edu> | 2012-12-28 09:40:01 -0500 |
---|---|---|
committer | Tom Rondeau <trondeau@vt.edu> | 2012-12-29 18:33:21 -0500 |
commit | 4580aaf9583b1e8ca4b3ef1d3127c7d48566fe67 (patch) | |
tree | 48c0102973b45ce8972f19a1af7f548ba3e1faef /gr-trellis/lib/core_algorithms.cc | |
parent | 6a8fc327dc2cbd1fa63b9acd08fa90baea0758e8 (diff) |
trellis: converted gr-trellis to new style.
Diffstat (limited to 'gr-trellis/lib/core_algorithms.cc')
-rw-r--r-- | gr-trellis/lib/core_algorithms.cc | 1324 |
1 files changed, 1324 insertions, 0 deletions
diff --git a/gr-trellis/lib/core_algorithms.cc b/gr-trellis/lib/core_algorithms.cc new file mode 100644 index 0000000000..a704e5f9a6 --- /dev/null +++ b/gr-trellis/lib/core_algorithms.cc @@ -0,0 +1,1324 @@ +/* -*- c++ -*- */ +/* + * Copyright 2004,2012 Free Software Foundation, Inc. + * + * This file is part of GNU Radio + * + * GNU Radio is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 3, or (at your option) + * any later version. + * + * GNU Radio is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with GNU Radio; see the file COPYING. If not, write to + * the Free Software Foundation, Inc., 51 Franklin Street, + * Boston, MA 02110-1301, USA. + */ + +#include <cstring> +#include <stdexcept> +#include <iostream> +#include <trellis/core_algorithms.h> +#include <trellis/calc_metric.h> + +namespace gr { + namespace trellis { + + static const float INF = 1.0e9; + + float + min(float a, float b) + { + return a <= b ? a : b; + } + + float + min_star(float a, float b) + { + return (a <= b ? a : b)-log(1+exp(a <= b ? a-b : b-a)); + } + + template <class T> void + viterbi_algorithm(int I, int S, int O, + const std::vector<int> &NS, + const std::vector<int> &OS, + const std::vector< std::vector<int> > &PS, + const std::vector< std::vector<int> > &PI, + int K, + int S0,int SK, + const float *in, T *out)//, + //std::vector<int> &trace) + { + std::vector<int> trace(S*K); + std::vector<float> alpha(S*2); + int alphai; + float norm,mm,minm; + int minmi; + int st; + + if(S0<0) { // initial state not specified + for(int i=0;i<S;i++) alpha[0*S+i]=0; + } + else { + for(int i=0;i<S;i++) alpha[0*S+i]=INF; + alpha[0*S+S0]=0.0; + } + + alphai=0; + for(int k=0;k<K;k++) { + norm=INF; + for(int j=0;j<S;j++) { // for each next state do ACS + minm=INF; + minmi=0; + for(unsigned int i=0;i<PS[j].size();i++) { + //int i0 = j*I+i; + if((mm=alpha[alphai*S+PS[j][i]]+in[k*O+OS[PS[j][i]*I+PI[j][i]]])<minm) + minm=mm,minmi=i; + } + trace[k*S+j]=minmi; + alpha[((alphai+1)%2)*S+j]=minm; + if(minm<norm) norm=minm; + } + for(int j=0;j<S;j++) + alpha[((alphai+1)%2)*S+j]-=norm; // normalize total metrics so they do not explode + alphai=(alphai+1)%2; + } + + if(SK<0) { // final state not specified + minm=INF; + minmi=0; + for(int i=0;i<S;i++) + if((mm=alpha[alphai*S+i])<minm) minm=mm,minmi=i; + st=minmi; + } + else { + st=SK; + } + + for(int k=K-1;k>=0;k--) { // traceback + int i0=trace[k*S+st]; + out[k]= (T) PI[st][i0]; + st=PS[st][i0]; + } + } + + template void + viterbi_algorithm<unsigned char>(int I, int S, int O, + const std::vector<int> &NS, + const std::vector<int> &OS, + const std::vector< std::vector<int> > &PS, + const std::vector< std::vector<int> > &PI, + int K, + int S0,int SK, + const float *in, unsigned char *out); + + template void + viterbi_algorithm<short>(int I, int S, int O, + const std::vector<int> &NS, + const std::vector<int> &OS, + const std::vector< std::vector<int> > &PS, + const std::vector< std::vector<int> > &PI, + int K, + int S0,int SK, + const float *in, short *out); + + template void + viterbi_algorithm<int>(int I, int S, int O, + const std::vector<int> &NS, + const std::vector<int> &OS, + const std::vector< std::vector<int> > &PS, + const std::vector< std::vector<int> > &PI, + int K, + int S0,int SK, + const float *in, int *out); + + //============================================== + + template <class Ti, class To> void + viterbi_algorithm_combined(int I, int S, int O, + const std::vector<int> &NS, + const std::vector<int> &OS, + const std::vector< std::vector<int> > &PS, + const std::vector< std::vector<int> > &PI, + int K, + int S0,int SK, + int D, + const std::vector<Ti> &TABLE, + digital::trellis_metric_type_t TYPE, + const Ti *in, To *out) + { + std::vector<int> trace(S*K); + std::vector<float> alpha(S*2); + float *metric = new float[O]; + int alphai; + float norm,mm,minm; + int minmi; + int st; + + if(S0<0) { // initial state not specified + for(int i=0;i<S;i++) alpha[0*S+i]=0; + } + else { + for(int i=0;i<S;i++) alpha[0*S+i]=INF; + alpha[0*S+S0]=0.0; + } + + alphai=0; + for(int k=0;k<K;k++) { + calc_metric(O, D, TABLE, &(in[k*D]), metric,TYPE); // calc metrics + norm=INF; + for(int j=0;j<S;j++) { // for each next state do ACS + minm=INF; + minmi=0; + for(unsigned int i=0;i<PS[j].size();i++) { + //int i0 = j*I+i; + if((mm=alpha[alphai*S+PS[j][i]]+metric[OS[PS[j][i]*I+PI[j][i]]])<minm) + minm=mm,minmi=i; + } + trace[k*S+j]=minmi; + alpha[((alphai+1)%2)*S+j]=minm; + if(minm<norm) norm=minm; + } + for(int j=0;j<S;j++) + alpha[((alphai+1)%2)*S+j]-=norm; // normalize total metrics so they do not explode + alphai=(alphai+1)%2; + } + + if(SK<0) { // final state not specified + minm=INF; + minmi=0; + for(int i=0;i<S;i++) + if((mm=alpha[alphai*S+i])<minm) minm=mm,minmi=i; + st=minmi; + } + else { + st=SK; + } + + for(int k=K-1;k>=0;k--) { // traceback + int i0=trace[k*S+st]; + out[k]= (To) PI[st][i0]; + st=PS[st][i0]; + } + + delete [] metric; + } + + // Ti = s i f c + // To = b s i + + //--------------- + + template void + viterbi_algorithm_combined<short,unsigned char>(int I, int S, int O, + const std::vector<int> &NS, + const std::vector<int> &OS, + const std::vector< std::vector<int> > &PS, + const std::vector< std::vector<int> > &PI, + int K, + int S0,int SK, + int D, + const std::vector<short> &TABLE, + digital::trellis_metric_type_t TYPE, + const short *in, unsigned char *out); + + template void + viterbi_algorithm_combined<int,unsigned char>(int I, int S, int O, + const std::vector<int> &NS, + const std::vector<int> &OS, + const std::vector< std::vector<int> > &PS, + const std::vector< std::vector<int> > &PI, + int K, + int S0,int SK, + int D, + const std::vector<int> &TABLE, + digital::trellis_metric_type_t TYPE, + const int *in, unsigned char *out); + + template void + viterbi_algorithm_combined<float,unsigned char>(int I, int S, int O, + const std::vector<int> &NS, + const std::vector<int> &OS, + const std::vector< std::vector<int> > &PS, + const std::vector< std::vector<int> > &PI, + int K, + int S0,int SK, + int D, + const std::vector<float> &TABLE, + digital::trellis_metric_type_t TYPE, + const float *in, unsigned char *out); + + template void + viterbi_algorithm_combined<gr_complex,unsigned char>(int I, int S, int O, + const std::vector<int> &NS, + const std::vector<int> &OS, + const std::vector< std::vector<int> > &PS, + const std::vector< std::vector<int> > &PI, + int K, + int S0,int SK, + int D, + const std::vector<gr_complex> &TABLE, + digital::trellis_metric_type_t TYPE, + const gr_complex *in, unsigned char *out); + + //--------------- + + template void + viterbi_algorithm_combined<short,short>(int I, int S, int O, + const std::vector<int> &NS, + const std::vector<int> &OS, + const std::vector< std::vector<int> > &PS, + const std::vector< std::vector<int> > &PI, + int K, + int S0,int SK, + int D, + const std::vector<short> &TABLE, + digital::trellis_metric_type_t TYPE, + const short *in, short *out); + + template void + viterbi_algorithm_combined<int,short>(int I, int S, int O, + const std::vector<int> &NS, + const std::vector<int> &OS, + const std::vector< std::vector<int> > &PS, + const std::vector< std::vector<int> > &PI, + int K, + int S0,int SK, + int D, + const std::vector<int> &TABLE, + digital::trellis_metric_type_t TYPE, + const int *in, short *out); + + template void + viterbi_algorithm_combined<float,short>(int I, int S, int O, + const std::vector<int> &NS, + const std::vector<int> &OS, + const std::vector< std::vector<int> > &PS, + const std::vector< std::vector<int> > &PI, + int K, + int S0,int SK, + int D, + const std::vector<float> &TABLE, + digital::trellis_metric_type_t TYPE, + const float *in, short *out); + + template void + viterbi_algorithm_combined<gr_complex,short>(int I, int S, int O, + const std::vector<int> &NS, + const std::vector<int> &OS, + const std::vector< std::vector<int> > &PS, + const std::vector< std::vector<int> > &PI, + int K, + int S0,int SK, + int D, + const std::vector<gr_complex> &TABLE, + digital::trellis_metric_type_t TYPE, + const gr_complex *in, short *out); + + //-------------- + + template void + viterbi_algorithm_combined<short,int>(int I, int S, int O, + const std::vector<int> &NS, + const std::vector<int> &OS, + const std::vector< std::vector<int> > &PS, + const std::vector< std::vector<int> > &PI, + int K, + int S0,int SK, + int D, + const std::vector<short> &TABLE, + digital::trellis_metric_type_t TYPE, + const short *in, int *out); + + template void + viterbi_algorithm_combined<int,int>(int I, int S, int O, + const std::vector<int> &NS, + const std::vector<int> &OS, + const std::vector< std::vector<int> > &PS, + const std::vector< std::vector<int> > &PI, + int K, + int S0,int SK, + int D, + const std::vector<int> &TABLE, + digital::trellis_metric_type_t TYPE, + const int *in, int *out); + + template void + viterbi_algorithm_combined<float,int>(int I, int S, int O, + const std::vector<int> &NS, + const std::vector<int> &OS, + const std::vector< std::vector<int> > &PS, + const std::vector< std::vector<int> > &PI, + int K, + int S0,int SK, + int D, + const std::vector<float> &TABLE, + digital::trellis_metric_type_t TYPE, + const float *in, int *out); + + template void + viterbi_algorithm_combined<gr_complex,int>(int I, int S, int O, + const std::vector<int> &NS, + const std::vector<int> &OS, + const std::vector< std::vector<int> > &PS, + const std::vector< std::vector<int> > &PI, + int K, + int S0,int SK, + int D, + const std::vector<gr_complex> &TABLE, + digital::trellis_metric_type_t TYPE, + const gr_complex *in, int *out); + + //=============================================== + + void + siso_algorithm(int I, int S, int O, + const std::vector<int> &NS, + const std::vector<int> &OS, + const std::vector< std::vector<int> > &PS, + const std::vector< std::vector<int> > &PI, + int K, + int S0,int SK, + bool POSTI, bool POSTO, + float (*p2mymin)(float,float), + const float *priori, const float *prioro, float *post//, + //std::vector<float> &alpha, + //std::vector<float> &beta + ) + { + float norm,mm,minm; + std::vector<float> alpha(S*(K+1)); + std::vector<float> beta(S*(K+1)); + + if(S0<0) { // initial state not specified + for(int i=0;i<S;i++) alpha[0*S+i]=0; + } + else { + for(int i=0;i<S;i++) alpha[0*S+i]=INF; + alpha[0*S+S0]=0.0; + } + + for(int k=0;k<K;k++) { // forward recursion + norm=INF; + for(int j=0;j<S;j++) { + minm=INF; + for(unsigned int i=0;i<PS[j].size();i++) { + //int i0 = j*I+i; + mm=alpha[k*S+PS[j][i]]+priori[k*I+PI[j][i]]+prioro[k*O+OS[PS[j][i]*I+PI[j][i]]]; + minm=(*p2mymin)(minm,mm); + } + alpha[(k+1)*S+j]=minm; + if(minm<norm) norm=minm; + } + for(int j=0;j<S;j++) + alpha[(k+1)*S+j]-=norm; // normalize total metrics so they do not explode + } + + if(SK<0) { // final state not specified + for(int i=0;i<S;i++) beta[K*S+i]=0; + } + else { + for(int i=0;i<S;i++) beta[K*S+i]=INF; + beta[K*S+SK]=0.0; + } + + for(int k=K-1;k>=0;k--) { // backward recursion + norm=INF; + for(int j=0;j<S;j++) { + minm=INF; + for(int i=0;i<I;i++) { + int i0 = j*I+i; + mm=beta[(k+1)*S+NS[i0]]+priori[k*I+i]+prioro[k*O+OS[i0]]; + minm=(*p2mymin)(minm,mm); + } + beta[k*S+j]=minm; + if(minm<norm) norm=minm; + } + for(int j=0;j<S;j++) + beta[k*S+j]-=norm; // normalize total metrics so they do not explode + } + + if(POSTI && POSTO) + { + for(int k=0;k<K;k++) { // input combining + norm=INF; + for(int i=0;i<I;i++) { + minm=INF; + for(int j=0;j<S;j++) { + mm=alpha[k*S+j]+prioro[k*O+OS[j*I+i]]+beta[(k+1)*S+NS[j*I+i]]; + minm=(*p2mymin)(minm,mm); + } + post[k*(I+O)+i]=minm; + if(minm<norm) norm=minm; + } + for(int i=0;i<I;i++) + post[k*(I+O)+i]-=norm; // normalize metrics + } + + for(int k=0;k<K;k++) { // output combining + norm=INF; + for(int n=0;n<O;n++) { + minm=INF; + for(int j=0;j<S;j++) { + for(int i=0;i<I;i++) { + mm= (n==OS[j*I+i] ? alpha[k*S+j]+priori[k*I+i]+beta[(k+1)*S+NS[j*I+i]] : INF); + minm=(*p2mymin)(minm,mm); + } + } + post[k*(I+O)+I+n]=minm; + if(minm<norm) norm=minm; + } + for(int n=0;n<O;n++) + post[k*(I+O)+I+n]-=norm; // normalize metrics + } + } + else if(POSTI) + { + for(int k=0;k<K;k++) { // input combining + norm=INF; + for(int i=0;i<I;i++) { + minm=INF; + for(int j=0;j<S;j++) { + mm=alpha[k*S+j]+prioro[k*O+OS[j*I+i]]+beta[(k+1)*S+NS[j*I+i]]; + minm=(*p2mymin)(minm,mm); + } + post[k*I+i]=minm; + if(minm<norm) norm=minm; + } + for(int i=0;i<I;i++) + post[k*I+i]-=norm; // normalize metrics + } + } + else if(POSTO) + { + for(int k=0;k<K;k++) { // output combining + norm=INF; + for(int n=0;n<O;n++) { + minm=INF; + for(int j=0;j<S;j++) { + for(int i=0;i<I;i++) { + mm= (n==OS[j*I+i] ? alpha[k*S+j]+priori[k*I+i]+beta[(k+1)*S+NS[j*I+i]] : INF); + minm=(*p2mymin)(minm,mm); + } + } + post[k*O+n]=minm; + if(minm<norm) norm=minm; + } + for(int n=0;n<O;n++) + post[k*O+n]-=norm; // normalize metrics + } + } + else + throw std::runtime_error("Not both POSTI and POSTO can be false."); + } + + //=========================================================== + + template <class T> void + siso_algorithm_combined(int I, int S, int O, + const std::vector<int> &NS, + const std::vector<int> &OS, + const std::vector< std::vector<int> > &PS, + const std::vector< std::vector<int> > &PI, + int K, + int S0,int SK, + bool POSTI, bool POSTO, + float (*p2mymin)(float,float), + int D, + const std::vector<T> &TABLE, + digital::trellis_metric_type_t TYPE, + const float *priori, const T *observations, float *post) + { + float norm,mm,minm; + std::vector<float> alpha(S*(K+1)); + std::vector<float> beta(S*(K+1)); + float *prioro = new float[O*K]; + + if(S0<0) { // initial state not specified + for(int i=0;i<S;i++) alpha[0*S+i]=0; + } + else { + for(int i=0;i<S;i++) alpha[0*S+i]=INF; + alpha[0*S+S0]=0.0; + } + + for(int k=0;k<K;k++) { // forward recursion + calc_metric(O, D, TABLE, &(observations[k*D]), &(prioro[k*O]),TYPE); // calc metrics + norm=INF; + for(int j=0;j<S;j++) { + minm=INF; + for(unsigned int i=0;i<PS[j].size();i++) { + //int i0 = j*I+i; + mm=alpha[k*S+PS[j][i]]+priori[k*I+PI[j][i]]+prioro[k*O+OS[PS[j][i]*I+PI[j][i]]]; + minm=(*p2mymin)(minm,mm); + } + alpha[(k+1)*S+j]=minm; + if(minm<norm) norm=minm; + } + for(int j=0;j<S;j++) + alpha[(k+1)*S+j]-=norm; // normalize total metrics so they do not explode + } + + if(SK<0) { // final state not specified + for(int i=0;i<S;i++) beta[K*S+i]=0; + } + else { + for(int i=0;i<S;i++) beta[K*S+i]=INF; + beta[K*S+SK]=0.0; + } + + for(int k=K-1;k>=0;k--) { // backward recursion + norm=INF; + for(int j=0;j<S;j++) { + minm=INF; + for(int i=0;i<I;i++) { + int i0 = j*I+i; + mm=beta[(k+1)*S+NS[i0]]+priori[k*I+i]+prioro[k*O+OS[i0]]; + minm=(*p2mymin)(minm,mm); + } + beta[k*S+j]=minm; + if(minm<norm) norm=minm; + } + for(int j=0;j<S;j++) + beta[k*S+j]-=norm; // normalize total metrics so they do not explode + } + + if(POSTI && POSTO) + { + for(int k=0;k<K;k++) { // input combining + norm=INF; + for(int i=0;i<I;i++) { + minm=INF; + for(int j=0;j<S;j++) { + mm=alpha[k*S+j]+prioro[k*O+OS[j*I+i]]+beta[(k+1)*S+NS[j*I+i]]; + minm=(*p2mymin)(minm,mm); + } + post[k*(I+O)+i]=minm; + if(minm<norm) norm=minm; + } + for(int i=0;i<I;i++) + post[k*(I+O)+i]-=norm; // normalize metrics + } + + for(int k=0;k<K;k++) { // output combining + norm=INF; + for(int n=0;n<O;n++) { + minm=INF; + for(int j=0;j<S;j++) { + for(int i=0;i<I;i++) { + mm= (n==OS[j*I+i] ? alpha[k*S+j]+priori[k*I+i]+beta[(k+1)*S+NS[j*I+i]] : INF); + minm=(*p2mymin)(minm,mm); + } + } + post[k*(I+O)+I+n]=minm; + if(minm<norm) norm=minm; + } + for(int n=0;n<O;n++) + post[k*(I+O)+I+n]-=norm; // normalize metrics + } + } + else if(POSTI) + { + for(int k=0;k<K;k++) { // input combining + norm=INF; + for(int i=0;i<I;i++) { + minm=INF; + for(int j=0;j<S;j++) { + mm=alpha[k*S+j]+prioro[k*O+OS[j*I+i]]+beta[(k+1)*S+NS[j*I+i]]; + minm=(*p2mymin)(minm,mm); + } + post[k*I+i]=minm; + if(minm<norm) norm=minm; + } + for(int i=0;i<I;i++) + post[k*I+i]-=norm; // normalize metrics + } + } + else if(POSTO) { + for(int k=0;k<K;k++) { // output combining + norm=INF; + for(int n=0;n<O;n++) { + minm=INF; + for(int j=0;j<S;j++) { + for(int i=0;i<I;i++) { + mm= (n==OS[j*I+i] ? alpha[k*S+j]+priori[k*I+i]+beta[(k+1)*S+NS[j*I+i]] : INF); + minm=(*p2mymin)(minm,mm); + } + } + post[k*O+n]=minm; + if(minm<norm) norm=minm; + } + for(int n=0;n<O;n++) + post[k*O+n]-=norm; // normalize metrics + } + } + else + throw std::runtime_error ("Not both POSTI and POSTO can be false."); + + delete [] prioro; + } + + //--------- + + template void + siso_algorithm_combined<short>(int I, int S, int O, + const std::vector<int> &NS, + const std::vector<int> &OS, + const std::vector< std::vector<int> > &PS, + const std::vector< std::vector<int> > &PI, + int K, + int S0,int SK, + bool POSTI, bool POSTO, + float (*p2mymin)(float,float), + int D, + const std::vector<short> &TABLE, + digital::trellis_metric_type_t TYPE, + const float *priori, const short *observations, float *post); + + template void + siso_algorithm_combined<int>(int I, int S, int O, + const std::vector<int> &NS, + const std::vector<int> &OS, + const std::vector< std::vector<int> > &PS, + const std::vector< std::vector<int> > &PI, + int K, + int S0,int SK, + bool POSTI, bool POSTO, + float (*p2mymin)(float,float), + int D, + const std::vector<int> &TABLE, + digital::trellis_metric_type_t TYPE, + const float *priori, const int *observations, float *post); + + template void + siso_algorithm_combined<float>(int I, int S, int O, + const std::vector<int> &NS, + const std::vector<int> &OS, + const std::vector< std::vector<int> > &PS, + const std::vector< std::vector<int> > &PI, + int K, + int S0,int SK, + bool POSTI, bool POSTO, + float (*p2mymin)(float,float), + int D, + const std::vector<float> &TABLE, + digital::trellis_metric_type_t TYPE, + const float *priori, const float *observations, float *post); + + template void + siso_algorithm_combined<gr_complex>(int I, int S, int O, + const std::vector<int> &NS, + const std::vector<int> &OS, + const std::vector< std::vector<int> > &PS, + const std::vector< std::vector<int> > &PI, + int K, + int S0,int SK, + bool POSTI, bool POSTO, + float (*p2mymin)(float,float), + int D, + const std::vector<gr_complex> &TABLE, + digital::trellis_metric_type_t TYPE, + const float *priori, const gr_complex *observations, float *post); + + //========================================================= + + template<class Ti, class To> void + sccc_decoder_combined(const fsm &FSMo, int STo0, int SToK, + const fsm &FSMi, int STi0, int STiK, + const interleaver &INTERLEAVER, int blocklength, int iterations, + float (*p2mymin)(float,float), + int D, const std::vector<Ti> &TABLE, + digital::trellis_metric_type_t METRIC_TYPE, + float scaling, + const Ti *observations, To *data) + { + //allocate space for priori, prioro and posti of inner FSM + std::vector<float> ipriori(blocklength*FSMi.I(),0.0); + std::vector<float> iprioro(blocklength*FSMi.O()); + std::vector<float> iposti(blocklength*FSMi.I()); + + //allocate space for priori, prioro and posto of outer FSM + std::vector<float> opriori(blocklength*FSMo.I(),0.0); + std::vector<float> oprioro(blocklength*FSMo.O()); + std::vector<float> oposti(blocklength*FSMo.I()); + std::vector<float> oposto(blocklength*FSMo.O()); + + // turn observations to neg-log-priors + for(int k=0;k<blocklength;k++) { + calc_metric(FSMi.O(), D, TABLE, &(observations[k*D]), &(iprioro[k*FSMi.O()]),METRIC_TYPE); + iprioro[k*FSMi.O()] *= scaling; + } + + for(int rep=0;rep<iterations;rep++) { + // run inner SISO + siso_algorithm(FSMi.I(),FSMi.S(),FSMi.O(), + FSMi.NS(), FSMi.OS(), FSMi.PS(), FSMi.PI(), + blocklength, + STi0,STiK, + true, false, + p2mymin, + &(ipriori[0]), &(iprioro[0]), &(iposti[0])); + + //interleave soft info inner -> outer + for(int k=0;k<blocklength;k++) { + int ki = INTERLEAVER.DEINTER()[k]; + //for(int i=0;i<FSMi.I();i++) { + //oprioro[k*FSMi.I()+i]=iposti[ki*FSMi.I()+i]; + //} + memcpy(&(oprioro[k*FSMi.I()]),&(iposti[ki*FSMi.I()]),FSMi.I()*sizeof(float)); + } + + // run outer SISO + + if(rep<iterations-1) { // do not produce posti + siso_algorithm(FSMo.I(),FSMo.S(),FSMo.O(), + FSMo.NS(), FSMo.OS(), FSMo.PS(), FSMo.PI(), + blocklength, + STo0,SToK, + false, true, + p2mymin, + &(opriori[0]), &(oprioro[0]), &(oposto[0])); + + //interleave soft info outer --> inner + for(int k=0;k<blocklength;k++) { + int ki = INTERLEAVER.DEINTER()[k]; + //for(int i=0;i<FSMi.I();i++) { + //ipriori[ki*FSMi.I()+i]=oposto[k*FSMi.I()+i]; + //} + memcpy(&(ipriori[ki*FSMi.I()]),&(oposto[k*FSMi.I()]),FSMi.I()*sizeof(float)); + } + } + else // produce posti but not posto + + siso_algorithm(FSMo.I(),FSMo.S(),FSMo.O(), + FSMo.NS(), FSMo.OS(), FSMo.PS(), FSMo.PI(), + blocklength, + STo0,SToK, + true, false, + p2mymin, + &(opriori[0]), &(oprioro[0]), &(oposti[0])); + + /* + viterbi_algorithm(FSMo.I(),FSMo.S(),FSMo.O(), + FSMo.NS(), FSMo.OS(), FSMo.PS(), FSMo.PI(), + blocklength, + STo0,SToK, + &(oprioro[0]), data + ); + */ + } + + // generate hard decisions + for(int k=0;k<blocklength;k++) { + float min=INF; + int mini=0; + for(int i=0;i<FSMo.I();i++) { + if(oposti[k*FSMo.I()+i]<min) { + min=oposti[k*FSMo.I()+i]; + mini=i; + } + } + data[k]=(To)mini; + } + } + + //------- + + template void + sccc_decoder_combined<float,unsigned char>(const fsm &FSMo, int STo0, int SToK, + const fsm &FSMi, int STi0, int STiK, + const interleaver &INTERLEAVER, int blocklength, + int iterations, + float (*p2mymin)(float,float), + int D, const std::vector<float> &TABLE, + digital::trellis_metric_type_t METRIC_TYPE, + float scaling, + const float *observations, unsigned char *data); + + template void + sccc_decoder_combined<float,short>(const fsm &FSMo, int STo0, int SToK, + const fsm &FSMi, int STi0, int STiK, + const interleaver &INTERLEAVER, int blocklength, + int iterations, + float (*p2mymin)(float,float), + int D, const std::vector<float> &TABLE, + digital::trellis_metric_type_t METRIC_TYPE, + float scaling, + const float *observations, short *data); + + template void + sccc_decoder_combined<float,int>(const fsm &FSMo, int STo0, int SToK, + const fsm &FSMi, int STi0, int STiK, + const interleaver &INTERLEAVER, int blocklength, + int iterations, + float (*p2mymin)(float,float), + int D, const std::vector<float> &TABLE, + digital::trellis_metric_type_t METRIC_TYPE, + float scaling, + const float *observations, int *data); + + template void + sccc_decoder_combined<gr_complex,unsigned char>(const fsm &FSMo, int STo0, int SToK, + const fsm &FSMi, int STi0, int STiK, + const interleaver &INTERLEAVER, int blocklength, + int iterations, + float (*p2mymin)(float,float), + int D, const std::vector<gr_complex> &TABLE, + digital::trellis_metric_type_t METRIC_TYPE, + float scaling, + const gr_complex *observations, unsigned char *data + ); + + template void + sccc_decoder_combined<gr_complex,short>(const fsm &FSMo, int STo0, int SToK, + const fsm &FSMi, int STi0, int STiK, + const interleaver &INTERLEAVER, int blocklength, + int iterations, + float (*p2mymin)(float,float), + int D, const std::vector<gr_complex> &TABLE, + digital::trellis_metric_type_t METRIC_TYPE, + float scaling, + const gr_complex *observations, short *data); + + template void + sccc_decoder_combined<gr_complex,int>(const fsm &FSMo, int STo0, int SToK, + const fsm &FSMi, int STi0, int STiK, + const interleaver &INTERLEAVER, int blocklength, + int iterations, + float (*p2mymin)(float,float), + int D, const std::vector<gr_complex> &TABLE, + digital::trellis_metric_type_t METRIC_TYPE, + float scaling, + const gr_complex *observations, int *data); + + //========================================================= + + template<class T> void + sccc_decoder(const fsm &FSMo, int STo0, int SToK, + const fsm &FSMi, int STi0, int STiK, + const interleaver &INTERLEAVER, int blocklength, int iterations, + float (*p2mymin)(float,float), + const float *iprioro, T *data) + { + //allocate space for priori, and posti of inner FSM + std::vector<float> ipriori(blocklength*FSMi.I(),0.0); + std::vector<float> iposti(blocklength*FSMi.I()); + + //allocate space for priori, prioro and posto of outer FSM + std::vector<float> opriori(blocklength*FSMo.I(),0.0); + std::vector<float> oprioro(blocklength*FSMo.O()); + std::vector<float> oposti(blocklength*FSMo.I()); + std::vector<float> oposto(blocklength*FSMo.O()); + + for(int rep=0;rep<iterations;rep++) { + // run inner SISO + siso_algorithm(FSMi.I(),FSMi.S(),FSMi.O(), + FSMi.NS(), FSMi.OS(), FSMi.PS(), FSMi.PI(), + blocklength, + STi0,STiK, + true, false, + p2mymin, + &(ipriori[0]), &(iprioro[0]), &(iposti[0])); + + //interleave soft info inner -> outer + for(int k=0;k<blocklength;k++) { + int ki = INTERLEAVER.DEINTER()[k]; + //for(int i=0;i<FSMi.I();i++) { + //oprioro[k*FSMi.I()+i]=iposti[ki*FSMi.I()+i]; + //} + memcpy(&(oprioro[k*FSMi.I()]),&(iposti[ki*FSMi.I()]),FSMi.I()*sizeof(float)); + } + + // run outer SISO + + if(rep<iterations-1) { // do not produce posti + siso_algorithm(FSMo.I(),FSMo.S(),FSMo.O(), + FSMo.NS(), FSMo.OS(), FSMo.PS(), FSMo.PI(), + blocklength, + STo0,SToK, + false, true, + p2mymin, + &(opriori[0]), &(oprioro[0]), &(oposto[0])); + + //interleave soft info outer --> inner + for(int k=0;k<blocklength;k++) { + int ki = INTERLEAVER.DEINTER()[k]; + //for(int i=0;i<FSMi.I();i++) { + //ipriori[ki*FSMi.I()+i]=oposto[k*FSMi.I()+i]; + //} + memcpy(&(ipriori[ki*FSMi.I()]),&(oposto[k*FSMi.I()]),FSMi.I()*sizeof(float)); + } + } + else {// produce posti but not posto + siso_algorithm(FSMo.I(),FSMo.S(),FSMo.O(), + FSMo.NS(), FSMo.OS(), FSMo.PS(), FSMo.PI(), + blocklength, + STo0,SToK, + true, false, + p2mymin, + &(opriori[0]), &(oprioro[0]), &(oposti[0])); + + /* + viterbi_algorithm(FSMo.I(),FSMo.S(),FSMo.O(), + FSMo.NS(), FSMo.OS(), FSMo.PS(), FSMo.PI(), + blocklength, + STo0,SToK, + &(oprioro[0]), data); + */ + } + } // end iterations + + // generate hard decisions + for(int k=0;k<blocklength;k++) { + float min=INF; + int mini=0; + for(int i=0;i<FSMo.I();i++) { + if(oposti[k*FSMo.I()+i]<min) { + min=oposti[k*FSMo.I()+i]; + mini=i; + } + } + data[k]=(T)mini; + } + } + + //------- + + template void + sccc_decoder<unsigned char>(const fsm &FSMo, int STo0, int SToK, + const fsm &FSMi, int STi0, int STiK, + const interleaver &INTERLEAVER, int blocklength, + int iterations, + float (*p2mymin)(float,float), + const float *iprioro, unsigned char *data); + + template void + sccc_decoder<short>(const fsm &FSMo, int STo0, int SToK, + const fsm &FSMi, int STi0, int STiK, + const interleaver &INTERLEAVER, int blocklength, + int iterations, + float (*p2mymin)(float,float), + const float *iprioro, short *data); + + template void + sccc_decoder<int>(const fsm &FSMo, int STo0, int SToK, + const fsm &FSMi, int STi0, int STiK, + const interleaver &INTERLEAVER, int blocklength, + int iterations, + float (*p2mymin)(float,float), + const float *iprioro, int *data); + + //==================================================== + + template<class T> void + pccc_decoder(const fsm &FSM1, int ST10, int ST1K, + const fsm &FSM2, int ST20, int ST2K, + const interleaver &INTERLEAVER, int blocklength, + int iterations, + float (*p2mymin)(float,float), + const float *cprioro, T *data) + { + //allocate space for priori, prioro and posti of FSM1 + std::vector<float> priori1(blocklength*FSM1.I(),0.0); + std::vector<float> prioro1(blocklength*FSM1.O()); + std::vector<float> posti1(blocklength*FSM1.I()); + + //allocate space for priori, prioro and posti of FSM2 + std::vector<float> priori2(blocklength*FSM2.I(),0.0); + std::vector<float> prioro2(blocklength*FSM2.O()); + std::vector<float> posti2(blocklength*FSM2.I()); + + //generate prioro1,2 (metrics are not updated per iteration: this is not the best you can do...) + for(int k=0;k<blocklength;k++) { + //std::cout << k << std::endl; + for(int i=0;i<FSM1.O();i++) { + float x=cprioro[k*FSM1.O()*FSM2.O()+i*FSM1.O()+0]; + for(int j=1;j<FSM2.O();j++) + x = (*p2mymin)(x,cprioro[k*FSM1.O()*FSM2.O()+i*FSM1.O()+j]); + prioro1[k*FSM1.O()+i]=x; + //std::cout << prioro1[k*FSM1.O()+i] << ", "; + } + //std::cout << std::endl; + for(int i=0;i<FSM2.O();i++) { + float x=cprioro[k*FSM1.O()*FSM2.O()+0*FSM1.O()+i]; + for(int j=1;j<FSM1.O();j++) + x = (*p2mymin)(x,cprioro[k*FSM1.O()*FSM2.O()+j*FSM1.O()+i]); + prioro2[k*FSM2.O()+i]=x; + } + } + + for(int rep=0;rep<iterations;rep++) { + // run SISO 1 + siso_algorithm(FSM1.I(),FSM1.S(),FSM1.O(), + FSM1.NS(), FSM1.OS(), FSM1.PS(), FSM1.PI(), + blocklength, + ST10,ST1K, + true, false, + p2mymin, + &(priori1[0]), &(prioro1[0]), &(posti1[0])); + + //for(int k=0;k<blocklength;k++){ + //for(int i=0;i<FSM1.I();i++) + //std::cout << posti1[k*FSM1.I()+i] << ", "; + //std::cout << std::endl; + //} + + //interleave soft info 1 -> 2 + for(int k=0;k<blocklength;k++) { + int ki = INTERLEAVER.INTER()[k]; + //for(int i=0;i<FSMi.I();i++) { + //oprioro[k*FSMi.I()+i]=iposti[ki*FSMi.I()+i]; + //} + memcpy(&(priori2[k*FSM2.I()]),&(posti1[ki*FSM1.I()]),FSM1.I()*sizeof(float)); + } + + // run SISO 2 + siso_algorithm(FSM2.I(),FSM2.S(),FSM2.O(), + FSM2.NS(), FSM2.OS(), FSM2.PS(), FSM2.PI(), + blocklength, + ST20,ST2K, + true, false, + p2mymin, + &(priori2[0]), &(prioro2[0]), &(posti2[0])); + + //interleave soft info 2 --> 1 + for(int k=0;k<blocklength;k++) { + int ki = INTERLEAVER.INTER()[k]; + //for(int i=0;i<FSMi.I();i++) { + //ipriori[ki*FSMi.I()+i]=oposto[k*FSMi.I()+i]; + //} + memcpy(&(priori1[ki*FSM1.I()]),&(posti2[k*FSM2.I()]),FSM1.I()*sizeof(float)); + } + } // end iterations + + // generate hard decisions + for(int k=0;k<blocklength;k++) { + for(int i=0;i<FSM1.I();i++) + posti1[k*FSM1.I()+i] = (*p2mymin)(priori1[k*FSM1.I()+i],posti1[k*FSM1.I()+i]); + float min=INF; + int mini=0; + for(int i=0;i<FSM1.I();i++) { + if(posti1[k*FSM1.I()+i]<min) { + min=posti1[k*FSM1.I()+i]; + mini=i; + } + } + data[k]=(T)mini; + //std::cout << data[k] << ", "<< std::endl; + } + //std::cout << std::endl; + } + + //---------------- + + template void + pccc_decoder<unsigned char>(const fsm &FSM1, int ST10, int ST1K, + const fsm &FSM2, int ST20, int ST2K, + const interleaver &INTERLEAVER, int blocklength, + int iterations, + float (*p2mymin)(float,float), + const float *cprioro, unsigned char *data); + + template void + pccc_decoder<short>(const fsm &FSM1, int ST10, int ST1K, + const fsm &FSM2, int ST20, int ST2K, + const interleaver &INTERLEAVER, int blocklength, + int iterations, + float (*p2mymin)(float,float), + const float *cprioro, short *data); + + template void + pccc_decoder<int>(const fsm &FSM1, int ST10, int ST1K, + const fsm &FSM2, int ST20, int ST2K, + const interleaver &INTERLEAVER, int blocklength, + int iterations, + float (*p2mymin)(float,float), + const float *cprioro, int *data); + + //---------------- + + template<class Ti, class To> void + pccc_decoder_combined(const fsm &FSM1, int ST10, int ST1K, + const fsm &FSM2, int ST20, int ST2K, + const interleaver &INTERLEAVER, int blocklength, + int iterations, + float (*p2mymin)(float,float), + int D, const std::vector<Ti> &TABLE, + digital::trellis_metric_type_t METRIC_TYPE, + float scaling, + const Ti *observations, To *data) + { + //allocate space for cprioro + std::vector<float> cprioro(blocklength*FSM1.O()*FSM2.O(),0.0); + + //allocate space for priori, prioro and posti of FSM1 + std::vector<float> priori1(blocklength*FSM1.I(),0.0); + std::vector<float> prioro1(blocklength*FSM1.O()); + std::vector<float> posti1(blocklength*FSM1.I()); + + //allocate space for priori, prioro and posti of FSM2 + std::vector<float> priori2(blocklength*FSM2.I(),0.0); + std::vector<float> prioro2(blocklength*FSM2.O()); + std::vector<float> posti2(blocklength*FSM2.I()); + + // turn observations to neg-log-priors for cprioiro + int O=FSM1.O()*FSM2.O(); + for(int k=0;k<blocklength;k++) { + calc_metric(O, D, TABLE, &(observations[k*D]), &(cprioro[k*O]),METRIC_TYPE); + cprioro[k*O] *= scaling; + } + + //generate prioro1,2 (metrics are not updated per iteration: this is not the best you can do...) + for(int k=0;k<blocklength;k++) { + //std::cout << k << std::endl; + for(int i=0;i<FSM1.O();i++) { + float x=cprioro[k*FSM1.O()*FSM2.O()+i*FSM1.O()+0]; + for(int j=1;j<FSM2.O();j++) + x = (*p2mymin)(x,cprioro[k*FSM1.O()*FSM2.O()+i*FSM1.O()+j]); + prioro1[k*FSM1.O()+i]=x; + //std::cout << prioro1[k*FSM1.O()+i] << ", "; + } + //std::cout << std::endl; + for(int i=0;i<FSM2.O();i++) { + float x=cprioro[k*FSM1.O()*FSM2.O()+0*FSM1.O()+i]; + for(int j=1;j<FSM1.O();j++) + x = (*p2mymin)(x,cprioro[k*FSM1.O()*FSM2.O()+j*FSM1.O()+i]); + prioro2[k*FSM2.O()+i]=x; + } + } + + for(int rep=0;rep<iterations;rep++) { + // run SISO 1 + siso_algorithm(FSM1.I(),FSM1.S(),FSM1.O(), + FSM1.NS(), FSM1.OS(), FSM1.PS(), FSM1.PI(), + blocklength, + ST10,ST1K, + true, false, + p2mymin, + &(priori1[0]), &(prioro1[0]), &(posti1[0])); + + //for(int k=0;k<blocklength;k++){ + //for(int i=0;i<FSM1.I();i++) + //std::cout << posti1[k*FSM1.I()+i] << ", "; + //std::cout << std::endl; + //} + + //interleave soft info 1 -> 2 + for(int k=0;k<blocklength;k++) { + int ki = INTERLEAVER.INTER()[k]; + //for(int i=0;i<FSMi.I();i++) { + //oprioro[k*FSMi.I()+i]=iposti[ki*FSMi.I()+i]; + //} + memcpy(&(priori2[k*FSM2.I()]),&(posti1[ki*FSM1.I()]),FSM1.I()*sizeof(float)); + } + + // run SISO 2 + siso_algorithm(FSM2.I(),FSM2.S(),FSM2.O(), + FSM2.NS(), FSM2.OS(), FSM2.PS(), FSM2.PI(), + blocklength, + ST20,ST2K, + true, false, + p2mymin, + &(priori2[0]), &(prioro2[0]), &(posti2[0])); + + //interleave soft info 2 --> 1 + for(int k=0;k<blocklength;k++) { + int ki = INTERLEAVER.INTER()[k]; + //for(int i=0;i<FSMi.I();i++) { + //ipriori[ki*FSMi.I()+i]=oposto[k*FSMi.I()+i]; + //} + memcpy(&(priori1[ki*FSM1.I()]),&(posti2[k*FSM2.I()]),FSM1.I()*sizeof(float)); + } + } // end iterations + + // generate hard decisions + for(int k=0;k<blocklength;k++) { + for(int i=0;i<FSM1.I();i++) + posti1[k*FSM1.I()+i] = (*p2mymin)(priori1[k*FSM1.I()+i],posti1[k*FSM1.I()+i]); + float min=INF; + int mini=0; + for(int i=0;i<FSM1.I();i++) { + if(posti1[k*FSM1.I()+i]<min) { + min=posti1[k*FSM1.I()+i]; + mini=i; + } + } + data[k]=(To)mini; + //std::cout << data[k] << ", "<< std::endl; + } + //std::cout << std::endl; + } + + template void + pccc_decoder_combined(const fsm &FSM1, int ST10, int ST1K, + const fsm &FSM2, int ST20, int ST2K, + const interleaver &INTERLEAVER, int blocklength, + int iterations, + float (*p2mymin)(float,float), + int D, const std::vector<float> &TABLE, + digital::trellis_metric_type_t METRIC_TYPE, + float scaling, + const float *observations, unsigned char *data); + + template void + pccc_decoder_combined(const fsm &FSM1, int ST10, int ST1K, + const fsm &FSM2, int ST20, int ST2K, + const interleaver &INTERLEAVER, int blocklength, + int iterations, + float (*p2mymin)(float,float), + int D, const std::vector<float> &TABLE, + digital::trellis_metric_type_t METRIC_TYPE, + float scaling, + const float *observations, short *data); + + template void + pccc_decoder_combined(const fsm &FSM1, int ST10, int ST1K, + const fsm &FSM2, int ST20, int ST2K, + const interleaver &INTERLEAVER, int blocklength, + int iterations, + float (*p2mymin)(float,float), + int D, const std::vector<float> &TABLE, + digital::trellis_metric_type_t METRIC_TYPE, + float scaling, + const float *observations, int *data); + + template void + pccc_decoder_combined(const fsm &FSM1, int ST10, int ST1K, + const fsm &FSM2, int ST20, int ST2K, + const interleaver &INTERLEAVER, int blocklength, + int iterations, + float (*p2mymin)(float,float), + int D, const std::vector<gr_complex> &TABLE, + digital::trellis_metric_type_t METRIC_TYPE, + float scaling, + const gr_complex *observations, unsigned char *data); + + template void + pccc_decoder_combined(const fsm &FSM1, int ST10, int ST1K, + const fsm &FSM2, int ST20, int ST2K, + const interleaver &INTERLEAVER, int blocklength, + int iterations, + float (*p2mymin)(float,float), + int D, const std::vector<gr_complex> &TABLE, + digital::trellis_metric_type_t METRIC_TYPE, + float scaling, + const gr_complex *observations, short *data); + + template void + pccc_decoder_combined(const fsm &FSM1, int ST10, int ST1K, + const fsm &FSM2, int ST20, int ST2K, + const interleaver &INTERLEAVER, int blocklength, + int iterations, + float (*p2mymin)(float,float), + int D, const std::vector<gr_complex> &TABLE, + digital::trellis_metric_type_t METRIC_TYPE, + float scaling, + const gr_complex *observations, int *data); + + } /* namespace trellis */ +} /* namespace gr */ |