summaryrefslogtreecommitdiff
path: root/gr-trellis/examples/python
diff options
context:
space:
mode:
authorAchilleas Anastasopoulos <anastas@umich.edu>2014-10-01 18:22:53 -0400
committerAchilleas Anastasopoulos <anastas@umich.edu>2014-10-08 12:46:21 -0400
commitbe8e888f80934a884287f0ec9eb62dd0d2b7f5e5 (patch)
treedc3406eb0a25bb3171458bfded74cfe192a775a5 /gr-trellis/examples/python
parent46e9dfed237990da20b5fb054b7fd33b1c152b4a (diff)
Updated documentation and grc/python examples in gr-trellis.
Removed weird pyhton examples and made them grc files.
Diffstat (limited to 'gr-trellis/examples/python')
-rw-r--r--gr-trellis/examples/python/CMakeLists.txt26
-rw-r--r--gr-trellis/examples/python/README10
-rw-r--r--gr-trellis/examples/python/fsm_files/awgn2o3_16ungerboeck.fsm50
-rw-r--r--gr-trellis/examples/python/fsm_files/awgn2o3_16ungerboecka.fsm48
-rw-r--r--gr-trellis/examples/python/fsm_files/awgn2o3_32ungerboeck.fsm83
-rw-r--r--gr-trellis/examples/python/fsm_files/awgn2o3_32ungerboecka.fsm84
-rw-r--r--gr-trellis/examples/python/fsm_files/awgn2o3_4_msb.fsm2
-rw-r--r--gr-trellis/examples/python/fsm_files/awgn2o3_4_msbG.fsm4
-rw-r--r--gr-trellis/examples/python/fsm_files/awgn2o3_4ungerboeck.fsm26
-rw-r--r--gr-trellis/examples/python/fsm_files/awgn2o3_4ungerboecka.fsm23
-rw-r--r--gr-trellis/examples/python/fsm_files/awgn2o3_64ungerboeck.fsm150
-rw-r--r--gr-trellis/examples/python/fsm_files/awgn2o3_64ungerboecka.fsm154
-rw-r--r--gr-trellis/examples/python/fsm_files/awgn2o3_8.fsm3
-rw-r--r--gr-trellis/examples/python/fsm_files/awgn2o3_8ungerboeck.fsm35
-rw-r--r--gr-trellis/examples/python/fsm_files/awgn2o3_8ungerboecka.fsm32
-rw-r--r--gr-trellis/examples/python/fsm_files/uncoded4.fsm7
-rwxr-xr-xgr-trellis/examples/python/fsm_utils.py239
-rwxr-xr-xgr-trellis/examples/python/test_cpm.py7
-rwxr-xr-xgr-trellis/examples/python/test_pccc_turbo1.py124
-rwxr-xr-xgr-trellis/examples/python/test_sccc_hard.py106
-rwxr-xr-xgr-trellis/examples/python/test_sccc_soft.py110
-rwxr-xr-xgr-trellis/examples/python/test_sccc_turbo.py146
-rwxr-xr-xgr-trellis/examples/python/test_sccc_turbo1.py104
-rwxr-xr-xgr-trellis/examples/python/test_sccc_turbo2.py106
-rwxr-xr-xgr-trellis/examples/python/test_tcm.py76
-rwxr-xr-xgr-trellis/examples/python/test_tcm_bit.py134
-rwxr-xr-xgr-trellis/examples/python/test_tcm_combined.py112
-rwxr-xr-xgr-trellis/examples/python/test_tcm_parallel.py118
-rwxr-xr-xgr-trellis/examples/python/test_turbo_equalization.py147
-rwxr-xr-xgr-trellis/examples/python/test_turbo_equalization1.py152
-rwxr-xr-xgr-trellis/examples/python/test_turbo_equalization2.py152
-rwxr-xr-xgr-trellis/examples/python/test_viterbi_equalization.py99
-rwxr-xr-xgr-trellis/examples/python/test_viterbi_equalization1.py108
33 files changed, 755 insertions, 2022 deletions
diff --git a/gr-trellis/examples/python/CMakeLists.txt b/gr-trellis/examples/python/CMakeLists.txt
index e2c7e70ff7..0e27a9540d 100644
--- a/gr-trellis/examples/python/CMakeLists.txt
+++ b/gr-trellis/examples/python/CMakeLists.txt
@@ -21,18 +21,8 @@ include(GrPython)
GR_PYTHON_INSTALL(
PROGRAMS
- fsm_utils.py
test_tcm.py
- test_tcm_parallel.py
- test_tcm_combined.py
- test_sccc_hard.py
- test_sccc_soft.py
- test_sccc_turbo.py
- test_viterbi_equalization1.py
- test_viterbi_equalization.py
- test_turbo_equalization.py
- test_turbo_equalization1.py
- test_turbo_equalization2.py
+ test_cpm.py
DESTINATION ${GR_PKG_TRELLIS_EXAMPLES_DIR}
COMPONENT "trellis_examples"
)
@@ -50,15 +40,29 @@ install(
fsm_files/awgn1o2_4.fsm
fsm_files/awgn1o2_8.fsm
fsm_files/awgn2o3_16.fsm
+ fsm_files/awgn2o3_16ungerboecka.fsm
+ fsm_files/awgn2o3_16ungerboeck.fsm
+ fsm_files/awgn2o3_32ungerboecka.fsm
+ fsm_files/awgn2o3_32ungerboeck.fsm
fsm_files/awgn2o3_4.fsm
fsm_files/awgn2o3_4_msb.fsm
fsm_files/awgn2o3_4_msbG.fsm
+ fsm_files/awgn2o3_4ungerboecka.fsm
+ fsm_files/awgn2o3_4ungerboeck.fsm
+ fsm_files/awgn2o3_64ungerboecka.fsm
+ fsm_files/awgn2o3_64ungerboeck.fsm
fsm_files/awgn2o3_8.fsm
+ fsm_files/awgn2o3_8ungerboecka.fsm
+ fsm_files/awgn2o3_8ungerboeck.fsm
fsm_files/awgn2o4_4.fsm
fsm_files/disconnected.fsm
+ fsm_files/irregular.fsm
+ fsm_files/joint_16_16.fsm
+ fsm_files/joint_4_16.fsm
fsm_files/rep3.fsm
fsm_files/rep5.fsm
fsm_files/simple.fsm
+ fsm_files/uncoded4.fsm
DESTINATION ${GR_PKG_TRELLIS_EXAMPLES_DIR}/fsm_files
COMPONENT "trellis_examples"
)
diff --git a/gr-trellis/examples/python/README b/gr-trellis/examples/python/README
index 155b0a9416..8b4e0f0abb 100644
--- a/gr-trellis/examples/python/README
+++ b/gr-trellis/examples/python/README
@@ -2,8 +2,6 @@ Here we have several test programs for use with the gr-trellis implementation.
Documentation can be found in
http://gnuradio.org/doc/doxygen/group__trellis__coding__blk.html
-fsm_utils.py contains several useful functions.
-
fsm_files is a directory with some FSM definitions
If you just want to see what these programs do run them;
@@ -26,10 +24,12 @@ which gives you information about the:
number of transmitted packets
number of packets in error
estimated packet error rate
-number of transmitted shorts (or symbols, or bits, depending on the specific program)
-number of shorts (or symbols, or bits) in error
-estimated short (or symbol, or bit) error rate
+number of transmitted symbols, or bits, depending on the specific program
+number of symbols, or bits in error
+estimated symbol, or bit error rate
for instance, the final number 1.10e-03 is the error rate estimate by sending 1000
packets of 1024 shorts each, using an 1/2 4-state convolutional code
and QPSK modulation through an AWGN with Es/N0 = 6.0 dB
+
+There is a similar example in the ../grc/ directory
diff --git a/gr-trellis/examples/python/fsm_files/awgn2o3_16ungerboeck.fsm b/gr-trellis/examples/python/fsm_files/awgn2o3_16ungerboeck.fsm
new file mode 100644
index 0000000000..70ead4f17a
--- /dev/null
+++ b/gr-trellis/examples/python/fsm_files/awgn2o3_16ungerboeck.fsm
@@ -0,0 +1,50 @@
+4 16 8
+
+0 1 2 3
+4 5 6 7
+8 9 10 11
+12 13 14 15
+0 1 2 3
+4 5 6 7
+8 9 10 11
+12 13 14 15
+0 1 2 3
+4 5 6 7
+8 9 10 11
+12 13 14 15
+0 1 2 3
+4 5 6 7
+8 9 10 11
+12 13 14 15
+
+
+0 4 2 6
+1 5 3 7
+4 0 6 2
+5 1 7 3
+2 6 0 4
+3 7 1 5
+6 2 4 0
+7 3 5 1
+4 0 6 2
+5 1 7 3
+0 4 2 6
+1 5 3 7
+6 2 4 0
+7 3 5 1
+2 6 0 4
+3 7 1 5
+
+This is the rate 2/3 Ungerboeck code with 16 states for 8-PSK (natural mapping).
+The states are defined in Ungerboeck's way.
+
+d_free^2 = 2.274^2 Es --> 7.13 dB (so gain of 4.13 dB over uncoded QPSK)
+
+Parity check matrix in octal: [16 04 23]
+
+Generator Matrix:
+
+[ D 1+D+D^2 0
+ 1+D^2 D^2 D]
+
+
diff --git a/gr-trellis/examples/python/fsm_files/awgn2o3_16ungerboecka.fsm b/gr-trellis/examples/python/fsm_files/awgn2o3_16ungerboecka.fsm
new file mode 100644
index 0000000000..523384362f
--- /dev/null
+++ b/gr-trellis/examples/python/fsm_files/awgn2o3_16ungerboecka.fsm
@@ -0,0 +1,48 @@
+4 16 8
+
+0 8 2 10
+0 8 2 10
+1 9 3 11
+1 9 3 11
+0 8 2 10
+0 8 2 10
+1 9 3 11
+1 9 3 11
+4 12 6 14
+4 12 6 14
+5 13 7 15
+5 13 7 15
+4 12 6 14
+4 12 6 14
+5 13 7 15
+5 13 7 15
+
+
+0 6 2 4
+2 4 0 6
+6 0 4 2
+4 2 6 0
+4 2 6 0
+6 0 4 2
+2 4 0 6
+0 6 2 4
+1 7 3 5
+3 5 1 7
+7 1 5 3
+5 3 7 1
+5 3 7 1
+7 1 5 3
+3 5 1 7
+1 7 3 5
+
+This is the rate 2/3 Ungerboeck code with 16 states for 8-PSK (natural mapping).
+The states are defined in typical way.
+
+d_free^2 = 2.274^2Es --> 7.13 dB (so gain of 4.13 dB over uncoded QPSK)
+
+Parity check matrix in octal: [16 04 23]
+
+Generator Matrix:
+
+[ D 1+D+D^2 0
+ 1+D^2 D^2 D]
diff --git a/gr-trellis/examples/python/fsm_files/awgn2o3_32ungerboeck.fsm b/gr-trellis/examples/python/fsm_files/awgn2o3_32ungerboeck.fsm
new file mode 100644
index 0000000000..a00f9c2e8d
--- /dev/null
+++ b/gr-trellis/examples/python/fsm_files/awgn2o3_32ungerboeck.fsm
@@ -0,0 +1,83 @@
+4 32 8
+
+0 16 1 17
+0 16 1 17
+0 16 1 17
+0 16 1 17
+2 18 3 19
+2 18 3 19
+2 18 3 19
+2 18 3 19
+4 20 5 21
+4 20 5 21
+4 20 5 21
+4 20 5 21
+6 22 7 23
+6 22 7 23
+6 22 7 23
+6 22 7 23
+8 24 9 25
+8 24 9 25
+8 24 9 25
+8 24 9 25
+10 26 11 27
+10 26 11 27
+10 26 11 27
+10 26 11 27
+12 28 13 29
+12 28 13 29
+12 28 13 29
+12 28 13 29
+14 30 15 31
+14 30 15 31
+14 30 15 31
+14 30 15 31
+
+
+
+
+0 4 2 6
+4 0 6 2
+2 6 0 4
+6 2 4 0
+5 1 7 3
+1 5 3 7
+7 3 5 1
+3 7 1 5
+1 5 3 7
+5 1 7 3
+3 7 1 5
+7 3 5 1
+4 0 6 2
+0 4 2 6
+6 2 4 0
+2 6 0 4
+1 5 3 7
+5 1 7 3
+3 7 1 5
+7 3 5 1
+4 0 6 2
+0 4 2 6
+6 2 4 0
+2 6 0 4
+0 4 2 6
+4 0 6 2
+2 6 0 4
+6 2 4 0
+5 1 7 3
+1 5 3 7
+7 3 5 1
+3 7 1 5
+
+This is the rate 2/3 Ungerboeck code with 32 states for 8-PSK (natural mapping).
+The states are defined in typical way.
+
+d_free^2 = 2.405^2 Es --> 7.59 dB (so gain of 4.59 dB over uncoded QPSK)
+
+Parity check matrix in octal: [34 16 45]
+
+Generator Matrix:
+
+[ 1 D 0
+ D^4 D^2+1 D^3+D^2+D]
+
diff --git a/gr-trellis/examples/python/fsm_files/awgn2o3_32ungerboecka.fsm b/gr-trellis/examples/python/fsm_files/awgn2o3_32ungerboecka.fsm
new file mode 100644
index 0000000000..b2e6ebdf44
--- /dev/null
+++ b/gr-trellis/examples/python/fsm_files/awgn2o3_32ungerboecka.fsm
@@ -0,0 +1,84 @@
+4 32 8
+0 16 1 17
+0 16 1 17
+0 16 1 17
+0 16 1 17
+2 18 3 19
+2 18 3 19
+2 18 3 19
+2 18 3 19
+4 20 5 21
+4 20 5 21
+4 20 5 21
+4 20 5 21
+6 22 7 23
+6 22 7 23
+6 22 7 23
+6 22 7 23
+8 24 9 25
+8 24 9 25
+8 24 9 25
+8 24 9 25
+10 26 11 27
+10 26 11 27
+10 26 11 27
+10 26 11 27
+12 28 13 29
+12 28 13 29
+12 28 13 29
+12 28 13 29
+14 30 15 31
+14 30 15 31
+14 30 15 31
+14 30 15 31
+
+
+
+
+
+0 4 2 6
+4 0 6 2
+2 6 0 4
+6 2 4 0
+1 5 3 7
+5 1 7 3
+3 7 1 5
+7 3 5 1
+3 7 1 5
+7 3 5 1
+1 5 3 7
+5 1 7 3
+2 6 0 4
+6 2 4 0
+0 4 2 6
+4 0 6 2
+1 5 3 7
+5 1 7 3
+3 7 1 5
+7 3 5 1
+0 4 2 6
+4 0 6 2
+2 6 0 4
+6 2 4 0
+2 6 0 4
+6 2 4 0
+0 4 2 6
+4 0 6 2
+3 7 1 5
+7 3 5 1
+1 5 3 7
+5 1 7 3
+
+This is the rate 2/3 Ungerboeck code with 32 states for 8-PSK (natural mapping).
+The states are defined in typical way.
+
+d_free^2 = 2.405^2 Es --> 7.59 dB (so gain of 4.59 dB over uncoded QPSK)
+
+Parity check matrix in octal: [34 16 45]
+
+Generator Matrix:
+
+[ 1 D 0
+ D^4+D 1 D^3+D^2+D]
+
+
diff --git a/gr-trellis/examples/python/fsm_files/awgn2o3_4_msb.fsm b/gr-trellis/examples/python/fsm_files/awgn2o3_4_msb.fsm
index d834c52718..ff6e2a763b 100644
--- a/gr-trellis/examples/python/fsm_files/awgn2o3_4_msb.fsm
+++ b/gr-trellis/examples/python/fsm_files/awgn2o3_4_msb.fsm
@@ -12,7 +12,7 @@
This is generated by the 1/2 AWGN code (5 7) operated twice, ie,
-(xk+1 xki) [xk-1 xk-2] -> [xk+1 xki].
+(xk+1 xk) [xk-1 xk-2] -> [xk+1 xk].
We also puncture the first (MSB) bit.
This code is worse than awgn2o3_4_msbG and slightly worse than
awgn2o3_4, BUT seems to be a good innner code for sctcm (with 8PSK natural).
diff --git a/gr-trellis/examples/python/fsm_files/awgn2o3_4_msbG.fsm b/gr-trellis/examples/python/fsm_files/awgn2o3_4_msbG.fsm
index 8956c53da2..54f9cbc3cc 100644
--- a/gr-trellis/examples/python/fsm_files/awgn2o3_4_msbG.fsm
+++ b/gr-trellis/examples/python/fsm_files/awgn2o3_4_msbG.fsm
@@ -11,7 +11,7 @@
This is generated by the 1/2 AWGN code (5 7) operated twice, ie,
-(xk+1 xki) [xk-1 xk-2] -> [xk+1 xki].
+(xk+1 xk) [xk-1 xk-2] -> [xk+1 xk].
We also puncture the first (MSB) bit and Gray map the symbols.
intermediate states:
@@ -45,7 +45,7 @@ and in decimal:
After Gray mapping:
label -> phase
0 -> 0
-1 -> 0
+1 -> 1
2 -> 7
3 -> 2
4 -> 5
diff --git a/gr-trellis/examples/python/fsm_files/awgn2o3_4ungerboeck.fsm b/gr-trellis/examples/python/fsm_files/awgn2o3_4ungerboeck.fsm
new file mode 100644
index 0000000000..160f4ea30f
--- /dev/null
+++ b/gr-trellis/examples/python/fsm_files/awgn2o3_4ungerboeck.fsm
@@ -0,0 +1,26 @@
+4 4 8
+
+0 0 1 1
+2 2 3 3
+0 0 1 1
+2 2 3 3
+
+
+0 4 2 6
+1 5 3 7
+2 6 0 4
+3 7 1 5
+
+
+
+This is the Ungerboeck code for 8-PSK (natural mapping).
+The states are defined in Ungerboeck's way.
+
+d_free^2=4 Es -> 3.0 dB over uncoded QPSK
+
+Parity check matrix in octal: [0 2 5]
+
+Generator matrix:
+
+[1 0 0
+ 0 1+D^2 D]
diff --git a/gr-trellis/examples/python/fsm_files/awgn2o3_4ungerboecka.fsm b/gr-trellis/examples/python/fsm_files/awgn2o3_4ungerboecka.fsm
new file mode 100644
index 0000000000..d9c210a0e9
--- /dev/null
+++ b/gr-trellis/examples/python/fsm_files/awgn2o3_4ungerboecka.fsm
@@ -0,0 +1,23 @@
+4 4 8
+
+0 2 0 2
+0 2 0 2
+1 3 1 3
+1 3 1 3
+
+0 2 4 6
+2 0 6 4
+1 3 5 7
+3 1 7 5
+
+This is the rate 2/3 Ungerboeck's code with 4 states.
+The states are defined in typical way.
+
+d_free^2=4 Es -> 3.0 dB over uncoded QPSK
+
+Parity check matrix in octal: [0 2 5]
+
+Generator matrix:
+
+[1 0 0
+ 0 1+D^2 D]
diff --git a/gr-trellis/examples/python/fsm_files/awgn2o3_64ungerboeck.fsm b/gr-trellis/examples/python/fsm_files/awgn2o3_64ungerboeck.fsm
new file mode 100644
index 0000000000..62c75c31c1
--- /dev/null
+++ b/gr-trellis/examples/python/fsm_files/awgn2o3_64ungerboeck.fsm
@@ -0,0 +1,150 @@
+4 64 8
+
+
+0 32 1 33
+0 32 1 33
+0 32 1 33
+0 32 1 33
+2 34 3 35
+2 34 3 35
+2 34 3 35
+2 34 3 35
+4 36 5 37
+4 36 5 37
+4 36 5 37
+4 36 5 37
+6 38 7 39
+6 38 7 39
+6 38 7 39
+6 38 7 39
+8 40 9 41
+8 40 9 41
+8 40 9 41
+8 40 9 41
+10 42 11 43
+10 42 11 43
+10 42 11 43
+10 42 11 43
+12 44 13 45
+12 44 13 45
+12 44 13 45
+12 44 13 45
+14 46 15 47
+14 46 15 47
+14 46 15 47
+14 46 15 47
+16 48 17 49
+16 48 17 49
+16 48 17 49
+16 48 17 49
+18 50 19 51
+18 50 19 51
+18 50 19 51
+18 50 19 51
+20 52 21 53
+20 52 21 53
+20 52 21 53
+20 52 21 53
+22 54 23 55
+22 54 23 55
+22 54 23 55
+22 54 23 55
+24 56 25 57
+24 56 25 57
+24 56 25 57
+24 56 25 57
+26 58 27 59
+26 58 27 59
+26 58 27 59
+26 58 27 59
+28 60 29 61
+28 60 29 61
+28 60 29 61
+28 60 29 61
+30 62 31 63
+30 62 31 63
+30 62 31 63
+30 62 31 63
+
+
+
+
+0 4 2 6
+4 0 6 2
+2 6 0 4
+6 2 4 0
+1 5 3 7
+5 1 7 3
+3 7 1 5
+7 3 5 1
+3 7 1 5
+7 3 5 1
+1 5 3 7
+5 1 7 3
+2 6 0 4
+6 2 4 0
+0 4 2 6
+4 0 6 2
+1 5 3 7
+5 1 7 3
+3 7 1 5
+7 3 5 1
+0 4 2 6
+4 0 6 2
+2 6 0 4
+6 2 4 0
+2 6 0 4
+6 2 4 0
+0 4 2 6
+4 0 6 2
+3 7 1 5
+7 3 5 1
+1 5 3 7
+5 1 7 3
+1 5 3 7
+5 1 7 3
+3 7 1 5
+7 3 5 1
+0 4 2 6
+4 0 6 2
+2 6 0 4
+6 2 4 0
+2 6 0 4
+6 2 4 0
+0 4 2 6
+4 0 6 2
+3 7 1 5
+7 3 5 1
+1 5 3 7
+5 1 7 3
+0 4 2 6
+4 0 6 2
+2 6 0 4
+6 2 4 0
+1 5 3 7
+5 1 7 3
+3 7 1 5
+7 3 5 1
+3 7 1 5
+7 3 5 1
+1 5 3 7
+5 1 7 3
+2 6 0 4
+6 2 4 0
+0 4 2 6
+4 0 6 2
+
+
+This is the rate 2/3 Ungerboeck code with 64 states for 8-PSK (natural mapping).
+The states are defined in typical way.
+
+d_free^2 = 2.52^2 Es --> 8.01 dB (so gain of 5.01 dB over uncoded QPSK)
+
+parity check matrix in octal: [074 036 105]
+
+generator matrix:
+
+[1 D 0
+ D^5 D^2+1 D^4+D^3+D^2+D]
+
+
diff --git a/gr-trellis/examples/python/fsm_files/awgn2o3_64ungerboecka.fsm b/gr-trellis/examples/python/fsm_files/awgn2o3_64ungerboecka.fsm
new file mode 100644
index 0000000000..137091f1f6
--- /dev/null
+++ b/gr-trellis/examples/python/fsm_files/awgn2o3_64ungerboecka.fsm
@@ -0,0 +1,154 @@
+4 64 8
+
+
+0 32 1 33
+0 32 1 33
+0 32 1 33
+0 32 1 33
+2 34 3 35
+2 34 3 35
+2 34 3 35
+2 34 3 35
+4 36 5 37
+4 36 5 37
+4 36 5 37
+4 36 5 37
+6 38 7 39
+6 38 7 39
+6 38 7 39
+6 38 7 39
+8 40 9 41
+8 40 9 41
+8 40 9 41
+8 40 9 41
+10 42 11 43
+10 42 11 43
+10 42 11 43
+10 42 11 43
+12 44 13 45
+12 44 13 45
+12 44 13 45
+12 44 13 45
+14 46 15 47
+14 46 15 47
+14 46 15 47
+14 46 15 47
+16 48 17 49
+16 48 17 49
+16 48 17 49
+16 48 17 49
+18 50 19 51
+18 50 19 51
+18 50 19 51
+18 50 19 51
+20 52 21 53
+20 52 21 53
+20 52 21 53
+20 52 21 53
+22 54 23 55
+22 54 23 55
+22 54 23 55
+22 54 23 55
+24 56 25 57
+24 56 25 57
+24 56 25 57
+24 56 25 57
+26 58 27 59
+26 58 27 59
+26 58 27 59
+26 58 27 59
+28 60 29 61
+28 60 29 61
+28 60 29 61
+28 60 29 61
+30 62 31 63
+30 62 31 63
+30 62 31 63
+30 62 31 63
+
+
+
+
+
+0 4 2 6
+4 0 6 2
+2 6 0 4
+6 2 4 0
+5 1 7 3
+1 5 3 7
+7 3 5 1
+3 7 1 5
+1 5 3 7
+5 1 7 3
+3 7 1 5
+7 3 5 1
+4 0 6 2
+0 4 2 6
+6 2 4 0
+2 6 0 4
+1 5 3 7
+5 1 7 3
+3 7 1 5
+7 3 5 1
+4 0 6 2
+0 4 2 6
+6 2 4 0
+2 6 0 4
+0 4 2 6
+4 0 6 2
+2 6 0 4
+6 2 4 0
+5 1 7 3
+1 5 3 7
+7 3 5 1
+3 7 1 5
+1 5 3 7
+5 1 7 3
+3 7 1 5
+7 3 5 1
+4 0 6 2
+0 4 2 6
+6 2 4 0
+2 6 0 4
+0 4 2 6
+4 0 6 2
+2 6 0 4
+6 2 4 0
+5 1 7 3
+1 5 3 7
+7 3 5 1
+3 7 1 5
+0 4 2 6
+4 0 6 2
+2 6 0 4
+6 2 4 0
+5 1 7 3
+1 5 3 7
+7 3 5 1
+3 7 1 5
+1 5 3 7
+5 1 7 3
+3 7 1 5
+7 3 5 1
+4 0 6 2
+0 4 2 6
+6 2 4 0
+2 6 0 4
+
+
+
+
+
+This is the rate 2/3 Ungerboeck code with 64 states for 8-PSK (natural mapping).
+The states are defined in typical way.
+
+d_free^2 = 2.52^2 Es --> 8.01 dB (so gain of 5.01 dB over uncoded QPSK)
+
+parity check matrix in octal: [074 036 105]
+
+generator matrix:
+
+[1 D 0
+ D^5+D 1 D^4+D^3+D^2+D]
+
+
diff --git a/gr-trellis/examples/python/fsm_files/awgn2o3_8.fsm b/gr-trellis/examples/python/fsm_files/awgn2o3_8.fsm
index 34deeb68cb..6ace4f5e14 100644
--- a/gr-trellis/examples/python/fsm_files/awgn2o3_8.fsm
+++ b/gr-trellis/examples/python/fsm_files/awgn2o3_8.fsm
@@ -21,5 +21,6 @@
-This is generated by the 1/2 8-state AWGN code (15 17) by puncturing the fourth bit.
+This is generated by the 1/2 8-state AWGN code (15 17) by operating it twice and
+puncturing the fourth bit.
--> d_free=???
diff --git a/gr-trellis/examples/python/fsm_files/awgn2o3_8ungerboeck.fsm b/gr-trellis/examples/python/fsm_files/awgn2o3_8ungerboeck.fsm
new file mode 100644
index 0000000000..e2f08eba25
--- /dev/null
+++ b/gr-trellis/examples/python/fsm_files/awgn2o3_8ungerboeck.fsm
@@ -0,0 +1,35 @@
+4 8 8
+
+0 1 2 3
+4 5 6 7
+0 1 2 3
+4 5 6 7
+0 1 2 3
+4 5 6 7
+0 1 2 3
+4 5 6 7
+
+
+0 4 2 6
+1 5 3 7
+4 0 6 2
+5 1 7 3
+2 6 0 4
+3 7 1 5
+6 2 4 0
+7 3 5 1
+
+
+
+This is the rate 2/3 Ungerboeck code with 8-states for 8-PSK (natural mapping).
+The states are defined in Ungerboeck's way.
+
+d_free^2 = 4.585 Es --> 6.6 dB (so gain of 3.6 dB over uncoded QPSK)
+
+Parity check matrix in octal: [04 02 11]
+
+Generator Matrix:
+
+[ 1 D 0
+ D^2 1 D]
+
diff --git a/gr-trellis/examples/python/fsm_files/awgn2o3_8ungerboecka.fsm b/gr-trellis/examples/python/fsm_files/awgn2o3_8ungerboecka.fsm
new file mode 100644
index 0000000000..2425e6a01a
--- /dev/null
+++ b/gr-trellis/examples/python/fsm_files/awgn2o3_8ungerboecka.fsm
@@ -0,0 +1,32 @@
+4 8 8
+
+0 4 1 5
+0 4 1 5
+0 4 1 5
+0 4 1 5
+2 6 3 7
+2 6 3 7
+2 6 3 7
+2 6 3 7
+
+0 4 2 6
+4 0 6 2
+2 6 0 4
+6 2 4 0
+1 5 3 7
+5 1 7 3
+3 7 1 5
+7 3 5 1
+
+This is the rate 2/3 Ungerboeck code with 8-states for 8-PSK (natural mapping).
+The states are defined in typical way.
+
+d_free^2 = 4.585 Es --> 6.6 dB (so gain of 3.6 dB over uncoded QPSK)
+
+Parity check matrix in octal: [04 02 11]
+
+Generator Matrix:
+
+[ 1 D 0
+ D^2 1 D]
+
diff --git a/gr-trellis/examples/python/fsm_files/uncoded4.fsm b/gr-trellis/examples/python/fsm_files/uncoded4.fsm
new file mode 100644
index 0000000000..67cb12ce8f
--- /dev/null
+++ b/gr-trellis/examples/python/fsm_files/uncoded4.fsm
@@ -0,0 +1,7 @@
+4 1 4
+
+0 0 0 0
+
+0 1 2 3
+
+uncoded 4-ary transmission
diff --git a/gr-trellis/examples/python/fsm_utils.py b/gr-trellis/examples/python/fsm_utils.py
deleted file mode 100755
index 06855ea775..0000000000
--- a/gr-trellis/examples/python/fsm_utils.py
+++ /dev/null
@@ -1,239 +0,0 @@
-#!/usr/bin/env python
-#
-# Copyright 2004 Free Software Foundation, Inc.
-#
-# This file is part of GNU Radio
-#
-# GNU Radio is free software; you can redistribute it and/or modify
-# it under the terms of the GNU General Public License as published by
-# the Free Software Foundation; either version 3, or (at your option)
-# any later version.
-#
-# GNU Radio is distributed in the hope that it will be useful,
-# but WITHOUT ANY WARRANTY; without even the implied warranty of
-# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-# GNU General Public License for more details.
-#
-# You should have received a copy of the GNU General Public License
-# along with GNU Radio; see the file COPYING. If not, write to
-# the Free Software Foundation, Inc., 51 Franklin Street,
-# Boston, MA 02110-1301, USA.
-#
-
-
-import re
-import math
-import sys
-import operator
-import numpy
-
-from gnuradio import trellis
-
-try:
- import scipy.linalg
-except ImportError:
- print "Error: Program requires scipy (see: www.scipy.org)."
- sys.exit(1)
-
-
-
-######################################################################
-# Decimal to any base conversion.
-# Convert 'num' to a list of 'l' numbers representing 'num'
-# to base 'base' (most significant symbol first).
-######################################################################
-def dec2base(num,base,l):
- s=range(l)
- n=num
- for i in range(l):
- s[l-i-1]=n%base
- n=int(n/base)
- if n!=0:
- print 'Number ', num, ' requires more than ', l, 'digits.'
- return s
-
-
-######################################################################
-# Conversion from any base to decimal.
-# Convert a list 's' of symbols to a decimal number
-# (most significant symbol first)
-######################################################################
-def base2dec(s,base):
- num=0
- for i in range(len(s)):
- num=num*base+s[i]
- return num
-
-
-
-
-######################################################################
-# Automatically generate the lookup table that maps the FSM outputs
-# to channel inputs corresponding to a channel 'channel' and a modulation
-# 'mod'. Optional normalization of channel to unit energy.
-# This table is used by the 'metrics' block to translate
-# channel outputs to metrics for use with the Viterbi algorithm.
-# Limitations: currently supports only one-dimensional modulations.
-######################################################################
-def make_isi_lookup(mod,channel,normalize):
- dim=mod[0]
- constellation = mod[1]
-
- if normalize:
- p = 0
- for i in range(len(channel)):
- p = p + channel[i]**2
- for i in range(len(channel)):
- channel[i] = channel[i]/math.sqrt(p)
-
- lookup=range(len(constellation)**len(channel))
- for o in range(len(constellation)**len(channel)):
- ss=dec2base(o,len(constellation),len(channel))
- ll=0
- for i in range(len(channel)):
- ll=ll+constellation[ss[i]]*channel[i]
- lookup[o]=ll
- return (1,lookup)
-
-
-
-
-
-
-######################################################################
-# Automatically generate the signals appropriate for CPM
-# decomposition.
-# This decomposition is based on the paper by B. Rimoldi
-# "A decomposition approach to CPM", IEEE Trans. Info Theory, March 1988
-# See also my own notes at http://www.eecs.umich.edu/~anastas/docs/cpm.pdf
-######################################################################
-def make_cpm_signals(K,P,M,L,q,frac):
-
- Q=numpy.size(q)/L
- h=(1.0*K)/P
- f0=-h*(M-1)/2
- dt=0.0; # maybe start at t=0.5
- t=(dt+numpy.arange(0,Q))/Q
- qq=numpy.zeros(Q)
- for m in range(L):
- qq=qq + q[m*Q:m*Q+Q]
- w=math.pi*h*(M-1)*t-2*math.pi*h*(M-1)*qq+math.pi*h*(L-1)*(M-1)
-
- X=(M**L)*P
- PSI=numpy.empty((X,Q))
- for x in range(X):
- xv=dec2base(x/P,M,L)
- xv=numpy.append(xv, x%P)
- qq1=numpy.zeros(Q)
- for m in range(L):
- qq1=qq1+xv[m]*q[m*Q:m*Q+Q]
- psi=2*math.pi*h*xv[-1]+4*math.pi*h*qq1+w
- #print psi
- PSI[x]=psi
- PSI = numpy.transpose(PSI)
- SS=numpy.exp(1j*PSI) # contains all signals as columns
- #print SS
-
-
- # Now we need to orthogonalize the signals
- F = scipy.linalg.orth(SS) # find an orthonormal basis for SS
- #print numpy.dot(numpy.transpose(F.conjugate()),F) # check for orthonormality
- S = numpy.dot(numpy.transpose(F.conjugate()),SS)
- #print F
- #print S
-
- # We only want to keep those dimensions that contain most
- # of the energy of the overall constellation (eg, frac=0.9 ==> 90%)
- # evaluate mean energy in each dimension
- E=numpy.sum(numpy.absolute(S)**2,axis=1)/Q
- E=E/numpy.sum(E)
- #print E
- Es = -numpy.sort(-E)
- Esi = numpy.argsort(-E)
- #print Es
- #print Esi
- Ecum=numpy.cumsum(Es)
- #print Ecum
- v0=numpy.searchsorted(Ecum,frac)
- N = v0+1
- #print v0
- #print Esi[0:v0+1]
- Ff=numpy.transpose(numpy.transpose(F)[Esi[0:v0+1]])
- #print Ff
- Sf = S[Esi[0:v0+1]]
- #print Sf
-
-
- return (f0,SS,S,F,Sf,Ff,N)
- #return f0
-
-
-
-
-######################################################################
-# A list of common modulations.
-# Format: (dimensionality,constellation)
-######################################################################
-pam2 = (1,[-1, 1])
-pam4 = (1,[-3, -1, 3, 1]) # includes Gray mapping
-pam8 = (1,[-7, -5, -3, -1, 1, 3, 5, 7])
-
-psk4=(2,[1, 0, \
- 0, 1, \
- 0, -1,\
- -1, 0]) # includes Gray mapping
-psk8=(2,[math.cos(2*math.pi*0/8), math.sin(2*math.pi*0/8), \
- math.cos(2*math.pi*1/8), math.sin(2*math.pi*1/8), \
- math.cos(2*math.pi*2/8), math.sin(2*math.pi*2/8), \
- math.cos(2*math.pi*3/8), math.sin(2*math.pi*3/8), \
- math.cos(2*math.pi*4/8), math.sin(2*math.pi*4/8), \
- math.cos(2*math.pi*5/8), math.sin(2*math.pi*5/8), \
- math.cos(2*math.pi*6/8), math.sin(2*math.pi*6/8), \
- math.cos(2*math.pi*7/8), math.sin(2*math.pi*7/8)])
-
-orth2 = (2,[1, 0, \
- 0, 1])
-orth4=(4,[1, 0, 0, 0, \
- 0, 1, 0, 0, \
- 0, 0, 1, 0, \
- 0, 0, 0, 1])
-
-######################################################################
-# A list of channels to be tested
-######################################################################
-
-# C test channel (J. Proakis, Digital Communications, McGraw-Hill Inc., 2001)
-c_channel = [0.227, 0.460, 0.688, 0.460, 0.227]
-
-
-
-
-
-
-
-
-
-
-if __name__ == '__main__':
- f1=trellis.fsm('fsm_files/awgn1o2_4.fsm')
- #f2=trellis.fsm('fsm_files/awgn2o3_4.fsm')
- #print f1.I(), f1.S(), f1.O()
- #print f1.NS()
- #print f1.OS()
- #print f2.I(), f2.S(), f2.O()
- #print f2.NS()
- #print f2.OS()
- ##f1.write_trellis_svg('f1.svg',4)
- #f2.write_trellis_svg('f2.svg',4)
- #f=fsm_concatenate(f1,f2)
- #f=fsm_radix(f1,2)
-
- #print "----------\n"
- #print f.I(), f.S(), f.O()
- #print f.NS()
- #print f.OS()
- #f.write_trellis_svg('f.svg',4)
-
- q=numpy.arange(0,8)/(2.0*8)
- (f0,SS,S,F,Sf,Ff,N) = make_cpm_signals(1,2,2,1,q,0.99)
-
diff --git a/gr-trellis/examples/python/test_cpm.py b/gr-trellis/examples/python/test_cpm.py
index 3f5cfc4587..6fe25ec68c 100755
--- a/gr-trellis/examples/python/test_cpm.py
+++ b/gr-trellis/examples/python/test_cpm.py
@@ -12,8 +12,8 @@ from gnuradio import trellis, digital, filter, blocks
from grc_gnuradio import blks2 as grc_blks2
import math
import numpy
-import fsm_utils
from gnuradio import trellis
+from gnuradio.trellis import fsm_utils
try:
from gnuradio import analog
@@ -43,8 +43,9 @@ def run_test(seed,blocksize):
f = trellis.fsm(P,M,L)
# CPFSK signals
- #p = numpy.ones(Q)/(2.0)
- #q = numpy.cumsum(p)/(1.0*Q)
+ #p = numpy.ones(L*Q)
+ #q = numpy.cumsum(p)
+ #q = q/q[-1]/2.0;
# GMSK signals
BT=0.3;
diff --git a/gr-trellis/examples/python/test_pccc_turbo1.py b/gr-trellis/examples/python/test_pccc_turbo1.py
deleted file mode 100755
index 7104aa5039..0000000000
--- a/gr-trellis/examples/python/test_pccc_turbo1.py
+++ /dev/null
@@ -1,124 +0,0 @@
-#!/usr/bin/env python
-
-from gnuradio import gr
-from gnuradio import trellis, digital, blocks
-from gnuradio import eng_notation
-import math
-import sys
-import random
-import fsm_utils
-
-try:
- from gnuradio import analog
-except ImportError:
- sys.stderr.write("Error: Program requires gr-analog.\n")
- sys.exit(1)
-
-def run_test (fo,fi,interleaver,Kb,bitspersymbol,K,dimensionality,constellation,Es,N0,IT,seed):
- tb = gr.top_block ()
-
-
- # TX
- src = blocks.lfsr_32k_source_s()
- src_head = blocks.head (gr.sizeof_short,Kb/16) # packet size in shorts
- s2fsmi = blocks.packed_to_unpacked_ss(bitspersymbol,gr.GR_MSB_FIRST) # unpack shorts to symbols compatible with the outer FSM input cardinality
- #src = blocks.vector_source_s([0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1],False)
- enc = trellis.pccc_encoder_ss(fo,0,fi,0,interleaver,K)
- code = blocks.vector_sink_s()
- mod = digital.chunks_to_symbols_sf(constellation,dimensionality)
-
- # CHANNEL
- add = blocks.add_ff()
- noise = analog.noise_source_f(analog.GR_GAUSSIAN,math.sqrt(N0/2),seed)
-
- # RX
- metrics_in = trellis.metrics_f(fi.O()*fo.O(),dimensionality,constellation,digital.TRELLIS_EUCLIDEAN) # data preprocessing to generate metrics for innner SISO
- scale = blocks.multiply_const_ff(1.0/N0)
- dec = trellis.pccc_decoder_s(fo,0,-1,fi,0,-1,interleaver,K,IT,trellis.TRELLIS_MIN_SUM)
-
- fsmi2s = blocks.unpacked_to_packed_ss(bitspersymbol,gr.GR_MSB_FIRST) # pack FSM input symbols to shorts
- dst = blocks.check_lfsr_32k_s()
-
- tb.connect (src,src_head,s2fsmi,enc,mod)
- #tb.connect (src,enc,mod)
- #tb.connect(enc,code)
- tb.connect (mod,(add,0))
- tb.connect (noise,(add,1))
- tb.connect (add,metrics_in,scale,dec,fsmi2s,dst)
-
- tb.run()
-
- #print code.data()
-
- ntotal = dst.ntotal ()
- nright = dst.nright ()
- runlength = dst.runlength ()
- return (ntotal,ntotal-nright)
-
-
-def main(args):
- nargs = len (args)
- if nargs == 5:
- fname_out=args[0]
- fname_in=args[1]
- esn0_db=float(args[2]) # Es/No in dB
- IT=int(args[3])
- rep=int(args[4]) # number of times the experiment is run to collect enough errors
- else:
- sys.stderr.write ('usage: test_pccc_turbo.py fsm_name_1 fsm_fname_2 Es/No_db iterations repetitions\n')
- sys.exit (1)
-
- # system parameters
- Kb=1024*16 # packet size in bits (make it multiple of 16 so it can be packed in a short)
- fo=trellis.fsm(fname_out) # get the outer FSM specification from a file
- fi=trellis.fsm(fname_in) # get the innner FSM specification from a file
- bitspersymbol = int(round(math.log(fo.I())/math.log(2))) # bits per FSM input symbol
- if fo.I() != fi.I():
- sys.stderr.write ('Incompatible input cardinality between two FSMs.\n')
- sys.exit (1)
- K=Kb/bitspersymbol # packet size in trellis steps
- interleaver=trellis.interleaver(K,666) # construct a random interleaver
- #modulation = fsm_utils.psk8 # see fsm_utlis.py for available predefined modulations
- dimensionality = 4
- constellation = [ 1, 0, 1, 0,\
- 1, 0,-1, 0,\
- 1, 0, 0, 1,\
- 1, 0, 0,-1,\
- -1, 0, 1, 0,\
- -1, 0,-1, 0,\
- -1, 0, 0, 1,\
- -1, 0, 0,-1,\
- 0, 1, 1, 0,\
- 0, 1,-1, 0,\
- 0, 1, 0, 1,\
- 0, 1, 0,-1,\
- 0,-1, 1, 0,\
- 0,-1,-1, 0,\
- 0,-1, 0, 1,\
- 0,-1, 0,-1,] # equivalent to 2 QPSK symbols
- if len(constellation)/dimensionality != fi.O()*fo.O():
- sys.stderr.write ('Incompatible FSM output cardinality and modulation size.\n')
- sys.exit (1)
- # calculate average symbol energy
- Es = 0
- for i in range(len(constellation)):
- Es = Es + constellation[i]**2
- Es = Es / (len(constellation)/dimensionality)
- N0=Es/pow(10.0,esn0_db/10.0); # calculate noise variance
-
- tot_s=0 # total number of transmitted shorts
- terr_s=0 # total number of shorts in error
- terr_p=0 # total number of packets in error
- for i in range(rep):
- (s,e)=run_test(fo,fi,interleaver,Kb,bitspersymbol,K,dimensionality,constellation,Es,N0,IT,-long(666+i)) # run experiment with different seed to get different noise realizations
- tot_s=tot_s+s
- terr_s=terr_s+e
- terr_p=terr_p+(terr_s!=0)
- if ((i+1)%10==0): # display progress
- print i+1,terr_p, '%.2e' % ((1.0*terr_p)/(i+1)),tot_s,terr_s, '%.2e' % ((1.0*terr_s)/tot_s)
- # estimate of the (short or bit) error rate
- print rep,terr_p, '%.2e' % ((1.0*terr_p)/(i+1)),tot_s,terr_s, '%.2e' % ((1.0*terr_s)/tot_s)
-
-
-if __name__ == '__main__':
- main (sys.argv[1:])
diff --git a/gr-trellis/examples/python/test_sccc_hard.py b/gr-trellis/examples/python/test_sccc_hard.py
deleted file mode 100755
index 83393df4dc..0000000000
--- a/gr-trellis/examples/python/test_sccc_hard.py
+++ /dev/null
@@ -1,106 +0,0 @@
-#!/usr/bin/env python
-
-from gnuradio import gr
-from gnuradio import trellis, digital, blocks
-from gnuradio import eng_notation
-import math
-import sys
-import random
-import fsm_utils
-
-try:
- from gnuradio import analog
-except ImportError:
- sys.stderr.write("Error: Program requires gr-analog.\n")
- sys.exit(1)
-
-def run_test (fo,fi,interleaver,Kb,bitspersymbol,K,dimensionality,constellation,N0,seed):
- tb = gr.top_block ()
-
-
- # TX
- src = blocks.lfsr_32k_source_s()
- src_head = blocks.head(gr.sizeof_short,Kb/16) # packet size in shorts
- s2fsmi = blocks.packed_to_unpacked_ss(bitspersymbol,gr.GR_MSB_FIRST) # unpack shorts to symbols compatible with the outer FSM input cardinality
- enc_out = trellis.encoder_ss(fo,0) # initial state = 0
- inter = trellis.permutation(interleaver.K(),interleaver.INTER(),1,gr.sizeof_short)
- enc_in = trellis.encoder_ss(fi,0) # initial state = 0
- mod = digital.chunks_to_symbols_sf(constellation,dimensionality)
-
- # CHANNEL
- add = blocks.add_ff()
- noise = analog.noise_source_f(analog.GR_GAUSSIAN,math.sqrt(N0/2),seed)
-
- # RX
- metrics_in = trellis.metrics_f(fi.O(),dimensionality,constellation,digital.TRELLIS_EUCLIDEAN) # data preprocessing to generate metrics for innner Viterbi
- va_in = trellis.viterbi_s(fi,K,0,-1) # Put -1 if the Initial/Final states are not set.
- deinter = trellis.permutation(interleaver.K(),interleaver.DEINTER(),1,gr.sizeof_short)
- metrics_out = trellis.metrics_s(fo.O(),1,[0,1,2,3],digital.TRELLIS_HARD_SYMBOL) # data preprocessing to generate metrics for outer Viterbi (hard decisions)
- va_out = trellis.viterbi_s(fo,K,0,-1) # Put -1 if the Initial/Final states are not set.
- fsmi2s = blocks.unpacked_to_packed_ss(bitspersymbol,gr.GR_MSB_FIRST) # pack FSM input symbols to shorts
- dst = blocks.check_lfsr_32k_s()
-
- tb.connect (src,src_head,s2fsmi,enc_out,inter,enc_in,mod)
- tb.connect (mod,(add,0))
- tb.connect (noise,(add,1))
- tb.connect (add,metrics_in)
- tb.connect (metrics_in,va_in,deinter,metrics_out,va_out,fsmi2s,dst)
-
- tb.run()
-
- ntotal = dst.ntotal ()
- nright = dst.nright ()
- runlength = dst.runlength ()
- return (ntotal,ntotal-nright)
-
-
-def main(args):
- nargs = len (args)
- if nargs == 4:
- fname_out=args[0]
- fname_in=args[1]
- esn0_db=float(args[2]) # Es/No in dB
- rep=int(args[3]) # number of times the experiment is run to collect enough errors
- else:
- sys.stderr.write ('usage: test_tcm.py fsm_name_out fsm_fname_in Es/No_db repetitions\n')
- sys.exit (1)
-
- # system parameters
- Kb=1024*16 # packet size in bits (make it multiple of 16 so it can be packed in a short)
- fo=trellis.fsm(fname_out) # get the outer FSM specification from a file
- fi=trellis.fsm(fname_in) # get the innner FSM specification from a file
- bitspersymbol = int(round(math.log(fo.I())/math.log(2))) # bits per FSM input symbol
- if fo.O() != fi.I():
- sys.stderr.write ('Incompatible cardinality between outer and inner FSM.\n')
- sys.exit (1)
- K=Kb/bitspersymbol # packet size in trellis steps
- interleaver=trellis.interleaver(K,666) # construct a random interleaver
- modulation = fsm_utils.psk8 # see fsm_utlis.py for available predefined modulations
- dimensionality = modulation[0]
- constellation = modulation[1]
- if len(constellation)/dimensionality != fi.O():
- sys.stderr.write ('Incompatible FSM output cardinality and modulation size.\n')
- sys.exit (1)
- # calculate average symbol energy
- Es = 0
- for i in range(len(constellation)):
- Es = Es + constellation[i]**2
- Es = Es / (len(constellation)/dimensionality)
- N0=Es/pow(10.0,esn0_db/10.0); # calculate noise variance
-
- tot_s=0 # total number of transmitted shorts
- terr_s=0 # total number of shorts in error
- terr_p=0 # total number of packets in error
- for i in range(rep):
- (s,e)=run_test(fo,fi,interleaver,Kb,bitspersymbol,K,dimensionality,constellation,N0,-long(666+i)) # run experiment with different seed to get different noise realizations
- tot_s=tot_s+s
- terr_s=terr_s+e
- terr_p=terr_p+(terr_s!=0)
- if ((i+1)%100==0) : # display progress
- print i+1,terr_p, '%.2e' % ((1.0*terr_p)/(i+1)),tot_s,terr_s, '%.2e' % ((1.0*terr_s)/tot_s)
- # estimate of the (short or bit) error rate
- print rep,terr_p, '%.2e' % ((1.0*terr_p)/(i+1)),tot_s,terr_s, '%.2e' % ((1.0*terr_s)/tot_s)
-
-
-if __name__ == '__main__':
- main (sys.argv[1:])
diff --git a/gr-trellis/examples/python/test_sccc_soft.py b/gr-trellis/examples/python/test_sccc_soft.py
deleted file mode 100755
index 25d26e0025..0000000000
--- a/gr-trellis/examples/python/test_sccc_soft.py
+++ /dev/null
@@ -1,110 +0,0 @@
-#!/usr/bin/env python
-
-from gnuradio import gr
-from gnuradio import trellis, digital, blocks
-from gnuradio import eng_notation
-import math
-import sys
-import random
-import fsm_utils
-
-try:
- from gnuradio import analog
-except ImportError:
- sys.stderr.write("Error: Program requires gr-analog.\n")
- sys.exit(1)
-
-def run_test (fo,fi,interleaver,Kb,bitspersymbol,K,dimensionality,constellation,N0,seed):
- tb = gr.top_block ()
-
-
- # TX
- src = blocks.lfsr_32k_source_s()
- src_head = blocks.head (gr.sizeof_short,Kb/16) # packet size in shorts
- s2fsmi = blocks.packed_to_unpacked_ss(bitspersymbol,gr.GR_MSB_FIRST) # unpack shorts to symbols compatible with the outer FSM input cardinality
- enc_out = trellis.encoder_ss(fo,0) # initial state = 0
- inter = trellis.permutation(interleaver.K(),interleaver.INTER(),1,gr.sizeof_short)
- enc_in = trellis.encoder_ss(fi,0) # initial state = 0
- mod = digital.chunks_to_symbols_sf(constellation,dimensionality)
-
- # CHANNEL
- add = blocks.add_ff()
- noise = analog.noise_source_f(analog.GR_GAUSSIAN,math.sqrt(N0/2),seed)
-
- # RX
- metrics_in = trellis.metrics_f(fi.O(),dimensionality,constellation,digital.TRELLIS_EUCLIDEAN) # data preprocessing to generate metrics for innner Viterbi
- gnd = blocks.vector_source_f([0],True);
- siso_in = trellis.siso_f(fi,K,0,-1,True,False,trellis.TRELLIS_MIN_SUM) # Put -1 if the Initial/Final states are not set.
- deinter = trellis.permutation(interleaver.K(),interleaver.DEINTER(),fi.I(),gr.sizeof_float)
- va_out = trellis.viterbi_s(fo,K,0,-1) # Put -1 if the Initial/Final states are not set.
- fsmi2s = blocks.unpacked_to_packed_ss(bitspersymbol,gr.GR_MSB_FIRST) # pack FSM input symbols to shorts
- dst = blocks.check_lfsr_32k_s()
-
- tb.connect (src,src_head,s2fsmi,enc_out,inter,enc_in,mod)
- tb.connect (mod,(add,0))
- tb.connect (noise,(add,1))
- tb.connect (add,metrics_in)
- tb.connect (gnd,(siso_in,0))
- tb.connect (metrics_in,(siso_in,1))
- tb.connect (siso_in,deinter,va_out,fsmi2s,dst)
-
- tb.run()
-
- ntotal = dst.ntotal ()
- nright = dst.nright ()
- runlength = dst.runlength ()
- return (ntotal,ntotal-nright)
-
-
-def main(args):
- nargs = len (args)
- if nargs == 4:
- fname_out=args[0]
- fname_in=args[1]
- esn0_db=float(args[2]) # Es/No in dB
- rep=int(args[3]) # number of times the experiment is run to collect enough errors
- else:
- sys.stderr.write ('usage: test_tcm.py fsm_name_out fsm_fname_in Es/No_db repetitions\n')
- sys.exit (1)
-
- # system parameters
- Kb=1024*16 # packet size in bits (make it multiple of 16 so it can be packed in a short)
- fo=trellis.fsm(fname_out) # get the outer FSM specification from a file
- fi=trellis.fsm(fname_in) # get the innner FSM specification from a file
- bitspersymbol = int(round(math.log(fo.I())/math.log(2))) # bits per FSM input symbol
- if fo.O() != fi.I():
- sys.stderr.write ('Incompatible cardinality between outer and inner FSM.\n')
- sys.exit (1)
- K=Kb/bitspersymbol # packet size in trellis steps
- interleaver=trellis.interleaver(K,666) # construct a random interleaver
- modulation = fsm_utils.psk8 # see fsm_utlis.py for available predefined modulations
- dimensionality = modulation[0]
- constellation = modulation[1]
- if len(constellation)/dimensionality != fi.O():
- sys.stderr.write ('Incompatible FSM output cardinality and modulation size.\n')
- sys.exit (1)
- # calculate average symbol energy
- Es = 0
- for i in range(len(constellation)):
- Es = Es + constellation[i]**2
- Es = Es / (len(constellation)/dimensionality)
- N0=Es/pow(10.0,esn0_db/10.0); # calculate noise variance
-
-
- tot_s=0 # total number of transmitted shorts
- terr_s=0 # total number of shorts in error
- terr_p=0 # total number of packets in error
- for i in range(rep):
- (s,e)=run_test(fo,fi,interleaver,Kb,bitspersymbol,K,dimensionality,constellation,N0,-long(666+i)) # run experiment with different seed to get different noise realizations
- tot_s=tot_s+s
- terr_s=terr_s+e
- terr_p=terr_p+(terr_s!=0)
- if ((i+1)%100==0) : # display progress
- print i+1,terr_p, '%.2e' % ((1.0*terr_p)/(i+1)),tot_s,terr_s, '%.2e' % ((1.0*terr_s)/tot_s)
- # estimate of the (short or bit) error rate
- print rep,terr_p, '%.2e' % ((1.0*terr_p)/(i+1)),tot_s,terr_s, '%.2e' % ((1.0*terr_s)/tot_s)
-
-
-
-if __name__ == '__main__':
- main (sys.argv[1:])
diff --git a/gr-trellis/examples/python/test_sccc_turbo.py b/gr-trellis/examples/python/test_sccc_turbo.py
deleted file mode 100755
index 08004e8a0d..0000000000
--- a/gr-trellis/examples/python/test_sccc_turbo.py
+++ /dev/null
@@ -1,146 +0,0 @@
-#!/usr/bin/env python
-
-from gnuradio import gr
-from gnuradio import trellis, digital, blocks
-from gnuradio import eng_notation
-import math
-import sys
-import random
-import fsm_utils
-
-try:
- from gnuradio import analog
-except ImportError:
- sys.stderr.write("Error: Program requires gr-analog.\n")
- sys.exit(1)
-
-def make_rx(tb,fo,fi,dimensionality,constellation,K,interleaver,IT,Es,N0,type):
- metrics_in = trellis.metrics_f(fi.O(),dimensionality,constellation,digital.TRELLIS_EUCLIDEAN) # data preprocessing to generate metrics for innner Viterbi
- scale = blocks.multiply_const_ff(1.0/N0)
- gnd = blocks.vector_source_f([0],True);
-
- inter=[]
- deinter=[]
- siso_in=[]
- siso_out=[]
-
- # generate all blocks
- for it in range(IT):
- inter.append( trellis.permutation(interleaver.K(),interleaver.INTER(),fi.I(),gr.sizeof_float) )
- siso_in.append( trellis.siso_f(fi,K,0,-1,True,False,type) )
- deinter.append( trellis.permutation(interleaver.K(),interleaver.DEINTER(),fi.I(),gr.sizeof_float) )
- if it < IT-1:
- siso_out.append( trellis.siso_f(fo,K,0,-1,False,True,type) )
- else:
- siso_out.append( trellis.viterbi_s(fo,K,0,-1) ) # no soft outputs needed
-
- # connect first stage
- tb.connect (gnd,inter[0])
- tb.connect (metrics_in,scale)
- tb.connect (scale,(siso_in[0],1))
-
- # connect the rest
- for it in range(IT):
- if it < IT-1:
- tb.connect (metrics_in,(siso_in[it+1],1))
- tb.connect (siso_in[it],deinter[it],(siso_out[it],1))
- tb.connect (gnd,(siso_out[it],0))
- tb.connect (siso_out[it],inter[it+1])
- tb.connect (inter[it],(siso_in[it],0))
- else:
- tb.connect (siso_in[it],deinter[it],siso_out[it])
- tb.connect (inter[it],(siso_in[it],0))
-
- return (metrics_in,siso_out[IT-1])
-
-
-def run_test (fo,fi,interleaver,Kb,bitspersymbol,K,dimensionality,constellation,Es,N0,IT,seed):
- tb = gr.top_block ()
-
-
- # TX
- src = blocks.lfsr_32k_source_s()
- src_head = blocks.head(gr.sizeof_short,Kb/16) # packet size in shorts
- s2fsmi = blocks.packed_to_unpacked_ss(bitspersymbol,gr.GR_MSB_FIRST) # unpack shorts to symbols compatible with the outer FSM input cardinality
- enc_out = trellis.encoder_ss(fo,0) # initial state = 0
- inter = trellis.permutation(interleaver.K(),interleaver.INTER(),1,gr.sizeof_short)
- enc_in = trellis.encoder_ss(fi,0) # initial state = 0
- mod = digital.chunks_to_symbols_sf(constellation,dimensionality)
-
- # CHANNEL
- add = blocks.add_ff()
- noise = analog.noise_source_f(analog.GR_GAUSSIAN,math.sqrt(N0/2),seed)
-
- # RX
- (head,tail) = make_rx(tb,fo,fi,dimensionality,constellation,K,interleaver,IT,Es,N0,trellis.TRELLIS_MIN_SUM)
- #(head,tail) = make_rx(tb,fo,fi,dimensionality,constellation,K,interleaver,IT,Es,N0,trellis.TRELLIS_SUM_PRODUCT)
- fsmi2s = blocks.unpacked_to_packed_ss(bitspersymbol,gr.GR_MSB_FIRST) # pack FSM input symbols to shorts
- dst = blocks.check_lfsr_32k_s()
-
- tb.connect (src,src_head,s2fsmi,enc_out,inter,enc_in,mod)
- tb.connect (mod,(add,0))
- tb.connect (noise,(add,1))
- tb.connect (add,head)
- tb.connect (tail,fsmi2s,dst)
-
- tb.run()
-
- #print enc_out.ST(), enc_in.ST()
-
- ntotal = dst.ntotal ()
- nright = dst.nright ()
- runlength = dst.runlength ()
- return (ntotal,ntotal-nright)
-
-
-def main(args):
- nargs = len (args)
- if nargs == 5:
- fname_out=args[0]
- fname_in=args[1]
- esn0_db=float(args[2]) # Es/No in dB
- IT=int(args[3])
- rep=int(args[4]) # number of times the experiment is run to collect enough errors
- else:
- sys.stderr.write ('usage: test_sccc_turbo.py fsm_name_out fsm_fname_in Es/No_db iterations repetitions\n')
- sys.exit (1)
-
- # system parameters
- Kb=1024*16 # packet size in bits (make it multiple of 16 so it can be packed in a short)
- fo=trellis.fsm(fname_out) # get the outer FSM specification from a file
- fi=trellis.fsm(fname_in) # get the innner FSM specification from a file
- bitspersymbol = int(round(math.log(fo.I())/math.log(2))) # bits per FSM input symbol
- if fo.O() != fi.I():
- sys.stderr.write ('Incompatible cardinality between outer and inner FSM.\n')
- sys.exit (1)
- K=Kb/bitspersymbol # packet size in trellis steps
- interleaver=trellis.interleaver(K,666) # construct a random interleaver
- modulation = fsm_utils.psk8 # see fsm_utlis.py for available predefined modulations
- dimensionality = modulation[0]
- constellation = modulation[1]
- if len(constellation)/dimensionality != fi.O():
- sys.stderr.write ('Incompatible FSM output cardinality and modulation size.\n')
- sys.exit (1)
- # calculate average symbol energy
- Es = 0
- for i in range(len(constellation)):
- Es = Es + constellation[i]**2
- Es = Es / (len(constellation)/dimensionality)
- N0=Es/pow(10.0,esn0_db/10.0); # calculate noise variance
-
- tot_s=0 # total number of transmitted shorts
- terr_s=0 # total number of shorts in error
- terr_p=0 # total number of packets in error
- for i in range(rep):
- (s,e)=run_test(fo,fi,interleaver,Kb,bitspersymbol,K,dimensionality,constellation,Es,N0,IT,-long(666+i)) # run experiment with different seed to get different noise realizations
- tot_s=tot_s+s
- terr_s=terr_s+e
- terr_p=terr_p+(terr_s!=0)
- if ((i+1)%10==0): # display progress
- print i+1,terr_p, '%.2e' % ((1.0*terr_p)/(i+1)),tot_s,terr_s, '%.2e' % ((1.0*terr_s)/tot_s)
- # estimate of the (short or bit) error rate
- print rep,terr_p, '%.2e' % ((1.0*terr_p)/(i+1)),tot_s,terr_s, '%.2e' % ((1.0*terr_s)/tot_s)
-
-
-if __name__ == '__main__':
- main (sys.argv[1:])
diff --git a/gr-trellis/examples/python/test_sccc_turbo1.py b/gr-trellis/examples/python/test_sccc_turbo1.py
deleted file mode 100755
index 528a79d011..0000000000
--- a/gr-trellis/examples/python/test_sccc_turbo1.py
+++ /dev/null
@@ -1,104 +0,0 @@
-#!/usr/bin/env python
-
-from gnuradio import gr
-from gnuradio import trellis, digital, blocks
-from gnuradio import eng_notation
-import math
-import sys
-import random
-import fsm_utils
-
-try:
- from gnuradio import analog
-except ImportError:
- sys.stderr.write("Error: Program requires gr-analog.\n")
- sys.exit(1)
-
-def run_test (fo,fi,interleaver,Kb,bitspersymbol,K,dimensionality,constellation,Es,N0,IT,seed):
- tb = gr.top_block ()
-
- # TX
- src = blocks.lfsr_32k_source_s()
- src_head = blocks.head(gr.sizeof_short,Kb/16) # packet size in shorts
- s2fsmi = blocks.packed_to_unpacked_ss(bitspersymbol,gr.GR_MSB_FIRST) # unpack shorts to symbols compatible with the outer FSM input cardinality
- enc = trellis.sccc_encoder_ss(fo,0,fi,0,interleaver,K)
- mod = digital.chunks_to_symbols_sf(constellation,dimensionality)
-
- # CHANNEL
- add = blocks.add_ff()
- noise = analog.noise_source_f(analog.GR_GAUSSIAN,math.sqrt(N0/2),seed)
-
- # RX
- dec = trellis.sccc_decoder_combined_fs(fo,0,-1,fi,0,-1,interleaver,K,IT,trellis.TRELLIS_MIN_SUM,dimensionality,constellation,digital.TRELLIS_EUCLIDEAN,1.0)
- fsmi2s = blocks.unpacked_to_packed_ss(bitspersymbol,gr.GR_MSB_FIRST) # pack FSM input symbols to shorts
- dst = blocks.check_lfsr_32k_s()
-
- #tb.connect (src,src_head,s2fsmi,enc_out,inter,enc_in,mod)
- tb.connect (src,src_head,s2fsmi,enc,mod)
- tb.connect (mod,(add,0))
- tb.connect (noise,(add,1))
- #tb.connect (add,head)
- #tb.connect (tail,fsmi2s,dst)
- tb.connect (add,dec,fsmi2s,dst)
-
- tb.run()
-
- #print enc_out.ST(), enc_in.ST()
-
- ntotal = dst.ntotal ()
- nright = dst.nright ()
- runlength = dst.runlength ()
- return (ntotal,ntotal-nright)
-
-
-def main(args):
- nargs = len (args)
- if nargs == 5:
- fname_out=args[0]
- fname_in=args[1]
- esn0_db=float(args[2]) # Es/No in dB
- IT=int(args[3])
- rep=int(args[4]) # number of times the experiment is run to collect enough errors
- else:
- sys.stderr.write ('usage: test_tcm.py fsm_name_out fsm_fname_in Es/No_db iterations repetitions\n')
- sys.exit (1)
-
- # system parameters
- Kb=1024*16 # packet size in bits (make it multiple of 16 so it can be packed in a short)
- fo=trellis.fsm(fname_out) # get the outer FSM specification from a file
- fi=trellis.fsm(fname_in) # get the innner FSM specification from a file
- bitspersymbol = int(round(math.log(fo.I())/math.log(2))) # bits per FSM input symbol
- if fo.O() != fi.I():
- sys.stderr.write ('Incompatible cardinality between outer and inner FSM.\n')
- sys.exit (1)
- K=Kb/bitspersymbol # packet size in trellis steps
- interleaver=trellis.interleaver(K,666) # construct a random interleaver
- modulation = fsm_utils.psk8 # see fsm_utlis.py for available predefined modulations
- dimensionality = modulation[0]
- constellation = modulation[1]
- if len(constellation)/dimensionality != fi.O():
- sys.stderr.write ('Incompatible FSM output cardinality and modulation size.\n')
- sys.exit (1)
- # calculate average symbol energy
- Es = 0
- for i in range(len(constellation)):
- Es = Es + constellation[i]**2
- Es = Es / (len(constellation)/dimensionality)
- N0=Es/pow(10.0,esn0_db/10.0); # calculate noise variance
-
- tot_s=0 # total number of transmitted shorts
- terr_s=0 # total number of shorts in error
- terr_p=0 # total number of packets in error
- for i in range(rep):
- (s,e)=run_test(fo,fi,interleaver,Kb,bitspersymbol,K,dimensionality,constellation,Es,N0,IT,-long(666+i)) # run experiment with different seed to get different noise realizations
- tot_s=tot_s+s
- terr_s=terr_s+e
- terr_p=terr_p+(terr_s!=0)
- if ((i+1)%10==0): # display progress
- print i+1,terr_p, '%.2e' % ((1.0*terr_p)/(i+1)),tot_s,terr_s, '%.2e' % ((1.0*terr_s)/tot_s)
- # estimate of the (short or bit) error rate
- print rep,terr_p, '%.2e' % ((1.0*terr_p)/(i+1)),tot_s,terr_s, '%.2e' % ((1.0*terr_s)/tot_s)
-
-
-if __name__ == '__main__':
- main (sys.argv[1:])
diff --git a/gr-trellis/examples/python/test_sccc_turbo2.py b/gr-trellis/examples/python/test_sccc_turbo2.py
deleted file mode 100755
index d7f26c4e13..0000000000
--- a/gr-trellis/examples/python/test_sccc_turbo2.py
+++ /dev/null
@@ -1,106 +0,0 @@
-#!/usr/bin/env python
-
-from gnuradio import gr
-from gnuradio import trellis, digital, blocks
-from gnuradio import eng_notation
-import math
-import sys
-import random
-import fsm_utils
-
-try:
- from gnuradio import analog
-except ImportError:
- sys.stderr.write("Error: Program requires gr-analog.\n")
- sys.exit(1)
-
-def run_test (fo,fi,interleaver,Kb,bitspersymbol,K,dimensionality,constellation,Es,N0,IT,seed):
- tb = gr.top_block ()
-
- # TX
- src = blocks.lfsr_32k_source_s()
- src_head = blocks.head(gr.sizeof_short,Kb/16) # packet size in shorts
- s2fsmi = blocks.packed_to_unpacked_ss(bitspersymbol,gr.GR_MSB_FIRST) # unpack shorts to symbols compatible with the outer FSM input cardinality
- enc = trellis.sccc_encoder_ss(fo,0,fi,0,interleaver,K)
- mod = digital.chunks_to_symbols_sf(constellation,dimensionality)
-
- # CHANNEL
- add = blocks.add_ff()
- noise = analog.noise_source_f(analog.GR_GAUSSIAN,math.sqrt(N0/2),seed)
-
- # RX
- metrics_in = trellis.metrics_f(fi.O(),dimensionality,constellation,digital.TRELLIS_EUCLIDEAN) # data preprocessing to generate metrics for innner SISO
- scale = blocks.multiply_const_ff(1.0/N0)
- dec = trellis.sccc_decoder_s(fo,0,-1,fi,0,-1,interleaver,K,IT,trellis.TRELLIS_MIN_SUM)
- fsmi2s = blocks.unpacked_to_packed_ss(bitspersymbol,gr.GR_MSB_FIRST) # pack FSM input symbols to shorts
- dst = blocks.check_lfsr_32k_s()
-
- #tb.connect (src,src_head,s2fsmi,enc_out,inter,enc_in,mod)
- tb.connect (src,src_head,s2fsmi,enc,mod)
- tb.connect (mod,(add,0))
- tb.connect (noise,(add,1))
- #tb.connect (add,head)
- #tb.connect (tail,fsmi2s,dst)
- tb.connect (add,metrics_in,scale,dec,fsmi2s,dst)
-
- tb.run()
-
- #print enc_out.ST(), enc_in.ST()
-
- ntotal = dst.ntotal ()
- nright = dst.nright ()
- runlength = dst.runlength ()
- return (ntotal,ntotal-nright)
-
-
-def main(args):
- nargs = len (args)
- if nargs == 5:
- fname_out=args[0]
- fname_in=args[1]
- esn0_db=float(args[2]) # Es/No in dB
- IT=int(args[3])
- rep=int(args[4]) # number of times the experiment is run to collect enough errors
- else:
- sys.stderr.write ('usage: test_tcm.py fsm_name_out fsm_fname_in Es/No_db iterations repetitions\n')
- sys.exit (1)
-
- # system parameters
- Kb=1024*16 # packet size in bits (make it multiple of 16 so it can be packed in a short)
- fo=trellis.fsm(fname_out) # get the outer FSM specification from a file
- fi=trellis.fsm(fname_in) # get the innner FSM specification from a file
- bitspersymbol = int(round(math.log(fo.I())/math.log(2))) # bits per FSM input symbol
- if fo.O() != fi.I():
- sys.stderr.write ('Incompatible cardinality between outer and inner FSM.\n')
- sys.exit (1)
- K=Kb/bitspersymbol # packet size in trellis steps
- interleaver=trellis.interleaver(K,666) # construct a random interleaver
- modulation = fsm_utils.psk8 # see fsm_utlis.py for available predefined modulations
- dimensionality = modulation[0]
- constellation = modulation[1]
- if len(constellation)/dimensionality != fi.O():
- sys.stderr.write ('Incompatible FSM output cardinality and modulation size.\n')
- sys.exit (1)
- # calculate average symbol energy
- Es = 0
- for i in range(len(constellation)):
- Es = Es + constellation[i]**2
- Es = Es / (len(constellation)/dimensionality)
- N0=Es/pow(10.0,esn0_db/10.0); # calculate noise variance
-
- tot_s=0 # total number of transmitted shorts
- terr_s=0 # total number of shorts in error
- terr_p=0 # total number of packets in error
- for i in range(rep):
- (s,e)=run_test(fo,fi,interleaver,Kb,bitspersymbol,K,dimensionality,constellation,Es,N0,IT,-long(666+i)) # run experiment with different seed to get different noise realizations
- tot_s=tot_s+s
- terr_s=terr_s+e
- terr_p=terr_p+(terr_s!=0)
- if ((i+1)%10==0): # display progress
- print i+1,terr_p, '%.2e' % ((1.0*terr_p)/(i+1)),tot_s,terr_s, '%.2e' % ((1.0*terr_s)/tot_s)
- # estimate of the (short or bit) error rate
- print rep,terr_p, '%.2e' % ((1.0*terr_p)/(i+1)),tot_s,terr_s, '%.2e' % ((1.0*terr_s)/tot_s)
-
-
-if __name__ == '__main__':
- main (sys.argv[1:])
diff --git a/gr-trellis/examples/python/test_tcm.py b/gr-trellis/examples/python/test_tcm.py
index bf9710aa1c..dfc565616e 100755
--- a/gr-trellis/examples/python/test_tcm.py
+++ b/gr-trellis/examples/python/test_tcm.py
@@ -6,9 +6,10 @@ from gnuradio import eng_notation
import math
import sys
import random
-import fsm_utils
+from gnuradio.trellis import fsm_utils
from gnuradio.eng_option import eng_option
from optparse import OptionParser
+import numpy
try:
from gnuradio import analog
@@ -19,39 +20,32 @@ except ImportError:
def run_test (f,Kb,bitspersymbol,K,dimensionality,constellation,N0,seed):
tb = gr.top_block ()
-
# TX
- #packet = [0]*Kb
- #for i in range(Kb-1*16): # last 16 bits = 0 to drive the final state to 0
- #packet[i] = random.randint(0, 1) # random 0s and 1s
- #src = blocks.vector_source_s(packet,False)
- src = blocks.lfsr_32k_source_s()
- src_head = blocks.head(gr.sizeof_short,Kb/16) # packet size in shorts
- #b2s = blocks.unpacked_to_packed_ss(1,gr.GR_MSB_FIRST) # pack bits in shorts
+ numpy.random.seed(-seed)
+ packet = numpy.random.randint(0,2,Kb) # create Kb random bits
+ packet[Kb-10:Kb]=0
+ packet[0:Kb]=0
+ src = blocks.vector_source_s(packet.tolist(),False)
+ b2s = blocks.unpacked_to_packed_ss(1,gr.GR_MSB_FIRST) # pack bits in shorts
s2fsmi = blocks.packed_to_unpacked_ss(bitspersymbol,gr.GR_MSB_FIRST) # unpack shorts to symbols compatible with the FSM input cardinality
enc = trellis.encoder_ss(f,0) # initial state = 0
mod = digital.chunks_to_symbols_sf(constellation,dimensionality)
# CHANNEL
add = blocks.add_ff()
- noise = analog.noise_source_f(analog.GR_GAUSSIAN,math.sqrt(N0/2),seed)
+ noise = analog.noise_source_f(analog.GR_GAUSSIAN,math.sqrt(N0/2),long(seed))
# RX
- metrics = trellis.metrics_f(f.O(),dimensionality,constellation,digital.TRELLIS_EUCLIDEAN) # data preprocessing to generate metrics for Viterbi
- va = trellis.viterbi_s(f,K,0,-1) # Put -1 if the Initial/Final states are not set.
+ va = trellis.viterbi_combined_fs(f,K,0,0,dimensionality,constellation,digital.TRELLIS_EUCLIDEAN) # Put -1 if the Initial/Final states are not set.
fsmi2s = blocks.unpacked_to_packed_ss(bitspersymbol,gr.GR_MSB_FIRST) # pack FSM input symbols to shorts
- #s2b = blocks.packed_to_unpacked_ss(1,gr.GR_MSB_FIRST) # unpack shorts to bits
- #dst = blocks.vector_sink_s();
- dst = blocks.check_lfsr_32k_s()
+ s2b = blocks.packed_to_unpacked_ss(1,gr.GR_MSB_FIRST) # unpack shorts to bits
+ dst = blocks.vector_sink_s();
- tb.connect (src,src_head,s2fsmi,enc,mod)
- #tb.connect (src,b2s,s2fsmi,enc,mod)
+ tb.connect (src,b2s,s2fsmi,enc,mod)
tb.connect (mod,(add,0))
tb.connect (noise,(add,1))
- tb.connect (add,metrics)
- tb.connect (metrics,va,fsmi2s,dst)
- #tb.connect (metrics,va,fsmi2s,s2b,dst)
+ tb.connect (add,va,fsmi2s,s2b,dst)
tb.run()
@@ -61,19 +55,11 @@ def run_test (f,Kb,bitspersymbol,K,dimensionality,constellation,N0,seed):
# Then put it as the last argument in the viterbi block
#print "final state = " , enc.ST()
- ntotal = dst.ntotal ()
- nright = dst.nright ()
- runlength = dst.runlength ()
- #ntotal = len(packet)
- #if len(dst.data()) != ntotal:
- #print "Error: not enough data\n"
- #nright = 0;
- #for i in range(ntotal):
- #if packet[i]==dst.data()[i]:
- #nright=nright+1
- #else:
- #print "Error in ", i
- return (ntotal,ntotal-nright)
+ if len(dst.data()) != len(packet):
+ print "Error: not enough data:", len(dst.data()), len(packet)
+ ntotal=len(packet)
+ nwrong = sum(abs(packet-numpy.array(dst.data())));
+ return (ntotal,nwrong,abs(packet-numpy.array(dst.data())))
@@ -113,20 +99,26 @@ def main():
Es = Es / (len(constellation)/dimensionality)
N0=Es/pow(10.0,esn0_db/10.0); # calculate noise variance
- tot_s=0 # total number of transmitted shorts
- terr_s=0 # total number of shorts in error
+ tot_b=0 # total number of transmitted bits
+ terr_b=0 # total number of bits in error
terr_p=0 # total number of packets in error
for i in range(rep):
- (s,e)=run_test(f,Kb,bitspersymbol,K,dimensionality,constellation,N0,-long(666+i)) # run experiment with different seed to get different noise realizations
- tot_s=tot_s+s
- terr_s=terr_s+e
- terr_p=terr_p+(terr_s!=0)
+ (b,e,pattern)=run_test(f,Kb,bitspersymbol,K,dimensionality,constellation,N0,-(666+i)) # run experiment with different seed to get different noise realizations
+ tot_b=tot_b+b
+ terr_b=terr_b+e
+ terr_p=terr_p+(e!=0)
if ((i+1)%100==0) : # display progress
- print i+1,terr_p, '%.2e' % ((1.0*terr_p)/(i+1)),tot_s,terr_s, '%.2e' % ((1.0*terr_s)/tot_s)
- # estimate of the (short or bit) error rate
- print rep,terr_p, '%.2e' % ((1.0*terr_p)/(i+1)),tot_s,terr_s, '%.2e' % ((1.0*terr_s)/tot_s)
+ print i+1,terr_p, '%.2e' % ((1.0*terr_p)/(i+1)),tot_b,terr_b, '%.2e' % ((1.0*terr_b)/tot_b)
+ if e!=0:
+ print "rep=",i, e
+ for k in range(Kb):
+ if pattern[k]!=0:
+ print k
+ # estimate of the bit error rate
+ print rep,terr_p, '%.2e' % ((1.0*terr_p)/(i+1)),tot_b,terr_b, '%.2e' % ((1.0*terr_b)/tot_b)
if __name__ == '__main__':
main()
+
diff --git a/gr-trellis/examples/python/test_tcm_bit.py b/gr-trellis/examples/python/test_tcm_bit.py
deleted file mode 100755
index 7880f0ea53..0000000000
--- a/gr-trellis/examples/python/test_tcm_bit.py
+++ /dev/null
@@ -1,134 +0,0 @@
-#!/usr/bin/env python
-
-from gnuradio import gr
-from gnuradio import trellis, digital, blocks
-from gnuradio import eng_notation
-import math
-import sys
-import random
-import fsm_utils
-from gnuradio.eng_option import eng_option
-from optparse import OptionParser
-
-try:
- from gnuradio import analog
-except ImportError:
- sys.stderr.write("Error: Program requires gr-analog.\n")
- sys.exit(1)
-
-def run_test (f,Kb,bitspersymbol,K,dimensionality,constellation,N0,seed):
- tb = gr.top_block ()
-
- # TX
- packet = [0]*Kb
- # this for loop is TOO slow!!!
- for i in range(Kb-1*16): # last 16 bits = 0 to drive the final state to 0
- packet[i] = random.randint(0, 1) # random 0s and 1s
- src = blocks.vector_source_s(packet,False)
- #src = blocks.lfsr_32k_source_s()
- #src_head = blocks.head (gr.sizeof_short,Kb/16) # packet size in shorts
- b2s = blocks.unpacked_to_packed_ss(1,gr.GR_MSB_FIRST) # pack bits in shorts
- s2fsmi = blocks.packed_to_unpacked_ss(bitspersymbol,gr.GR_MSB_FIRST) # unpack shorts to symbols compatible with the FSM input cardinality
- enc = trellis.encoder_ss(f,0) # initial state = 0
- mod = digital.chunks_to_symbols_sf(constellation,dimensionality)
-
-
- # CHANNEL
- add = blocks.add_ff()
- noise = analog.noise_source_f(analog.GR_GAUSSIAN,math.sqrt(N0/2),seed)
-
-
- # RX
- metrics = trellis.metrics_f(f.O(),dimensionality,constellation,digital.TRELLIS_EUCLIDEAN) # data preprocessing to generate metrics for Viterbi
- va = trellis.viterbi_s(f,K,0,-1) # Put -1 if the Initial/Final states are not set.
- fsmi2s = blocks.unpacked_to_packed_ss(bitspersymbol,gr.GR_MSB_FIRST) # pack FSM input symbols to shorts
- s2b = blocks.packed_to_unpacked_ss(1,gr.GR_MSB_FIRST) # unpack shorts to bits
- dst = blocks.vector_sink_s();
- #dst = blocks.check_lfsr_32k_s();
-
-
- #tb.connect (src,src_head,s2fsmi,enc,mod)
- tb.connect (src,b2s,s2fsmi,enc,mod)
- tb.connect (mod,(add,0))
- tb.connect (noise,(add,1))
- tb.connect (add,metrics)
- #tb.connect (metrics,va,fsmi2s,dst)
- tb.connect (metrics,va,fsmi2s,s2b,dst)
-
-
- tb.run()
-
- # A bit of cheating: run the program once and print the
- # final encoder state..
- # Then put it as the last argument in the viterbi block
- #print "final state = " , enc.ST()
-
- #ntotal = dst.ntotal ()
- #nright = dst.nright ()
- #runlength = dst.runlength ()
- ntotal = len(packet)
- if len(dst.data()) != ntotal:
- print "Error: not enough data\n"
- nright = 0;
- # this for loop is TOO slow!!!
- for i in range(ntotal):
- if packet[i]==dst.data()[i]:
- nright=nright+1
- #else:
- #print "Error in ", i
- return (ntotal,ntotal-nright)
-
-
-
-
-def main():
- parser = OptionParser(option_class=eng_option)
- parser.add_option("-f", "--fsm_file", type="string", default="fsm_files/awgn1o2_4.fsm", help="Filename containing the fsm specification, e.g. -f fsm_files/awgn1o2_4.fsm (default=fsm_files/awgn1o2_4.fsm)")
- parser.add_option("-e", "--esn0", type="eng_float", default=10.0, help="Symbol energy to noise PSD level ratio in dB, e.g., -e 10.0 (default=10.0)")
- parser.add_option("-r", "--repetitions", type="int", default=100, help="Number of packets to be generated for the simulation, e.g., -r 100 (default=100)")
-
- (options, args) = parser.parse_args ()
- if len(args) != 0:
- parser.print_help()
- raise SystemExit, 1
-
- fname=options.fsm_file
- esn0_db=float(options.esn0)
- rep=int(options.repetitions)
-
-
- # system parameters
- f=trellis.fsm(fname) # get the FSM specification from a file
- Kb=1024*16 # packet size in bits (make it multiple of 16 so it can be packed in a short)
- bitspersymbol = int(round(math.log(f.I())/math.log(2))) # bits per FSM input symbol
- K=Kb/bitspersymbol # packet size in trellis steps
- modulation = fsm_utils.psk4 # see fsm_utlis.py for available predefined modulations
- dimensionality = modulation[0]
- constellation = modulation[1]
- if len(constellation)/dimensionality != f.O():
- sys.stderr.write ('Incompatible FSM output cardinality and modulation size.\n')
- sys.exit (1)
- # calculate average symbol energy
- Es = 0
- for i in range(len(constellation)):
- Es = Es + constellation[i]**2
- Es = Es / (len(constellation)/dimensionality)
- N0=Es/pow(10.0,esn0_db/10.0); # calculate noise variance
-
- tot_s=0 # total number of transmitted shorts
- terr_s=0 # total number of shorts in error
- terr_p=0 # total number of packets in error
- for i in range(rep):
- (s,e)=run_test(f,Kb,bitspersymbol,K,dimensionality,constellation,N0,-long(666+i)) # run experiment with different seed to get different noise realizations
- tot_s=tot_s+s
- terr_s=terr_s+e
- terr_p=terr_p+(terr_s!=0)
- if ((i+1)%1==0) : # display progress
- print i+1,terr_p, '%.2e' % ((1.0*terr_p)/(i+1)),tot_s,terr_s, '%.2e' % ((1.0*terr_s)/tot_s)
- # estimate of the (short or bit) error rate
- print rep,terr_p, '%.2e' % ((1.0*terr_p)/(i+1)),tot_s,terr_s, '%.2e' % ((1.0*terr_s)/tot_s)
-
-
-
-if __name__ == '__main__':
- main()
diff --git a/gr-trellis/examples/python/test_tcm_combined.py b/gr-trellis/examples/python/test_tcm_combined.py
deleted file mode 100755
index 697e3cc64a..0000000000
--- a/gr-trellis/examples/python/test_tcm_combined.py
+++ /dev/null
@@ -1,112 +0,0 @@
-#!/usr/bin/env python
-
-from gnuradio import gr
-from gnuradio import trellis, digital, blocks
-from gnuradio import eng_notation
-import math
-import sys
-import fsm_utils
-from gnuradio.eng_option import eng_option
-from optparse import OptionParser
-
-try:
- from gnuradio import analog
-except ImportError:
- sys.stderr.write("Error: Program requires gr-analog.\n")
- sys.exit(1)
-
-def run_test (f,Kb,bitspersymbol,K,dimensionality,constellation,N0,seed):
- tb = gr.top_block ()
-
- # TX
- src = blocks.lfsr_32k_source_s()
- src_head = blocks.head(gr.sizeof_short,Kb/16) # packet size in shorts
- s2fsmi = blocks.packed_to_unpacked_ss(bitspersymbol,gr.GR_MSB_FIRST) # unpack shorts to symbols compatible with the FSM input cardinality
- enc = trellis.encoder_ss(f,0) # initial state = 0
- mod = digital.chunks_to_symbols_sf(constellation,dimensionality)
-
-
- # CHANNEL
- add = blocks.add_ff()
- noise = analog.noise_source_f(analog.GR_GAUSSIAN,math.sqrt(N0/2),seed)
-
-
- # RX
- va = trellis.viterbi_combined_fs(f,K,0,-1,dimensionality,constellation,digital.TRELLIS_EUCLIDEAN) # Put -1 if the Initial/Final states are not set.
- fsmi2s = blocks.unpacked_to_packed_ss(bitspersymbol,gr.GR_MSB_FIRST) # pack FSM input symbols to shorts
- dst = blocks.check_lfsr_32k_s();
-
-
- tb.connect (src,src_head,s2fsmi,enc,mod)
- tb.connect (mod,(add,0))
- tb.connect (noise,(add,1))
- tb.connect (add,va,fsmi2s,dst)
-
-
- tb.run()
-
- # A bit of cheating: run the program once and print the
- # final encoder state..
- # Then put it as the last argument in the viterbi block
- #print "final state = " , enc.ST()
-
- ntotal = dst.ntotal ()
- nright = dst.nright ()
- runlength = dst.runlength ()
-
- return (ntotal,ntotal-nright)
-
-
-
-
-def main():
- parser = OptionParser(option_class=eng_option)
- parser.add_option("-f", "--fsm_file", type="string", default="fsm_files/awgn1o2_4.fsm", help="Filename containing the fsm specification, e.g. -f fsm_files/awgn1o2_4.fsm (default=fsm_files/awgn1o2_4.fsm)")
- parser.add_option("-e", "--esn0", type="eng_float", default=10.0, help="Symbol energy to noise PSD level ratio in dB, e.g., -e 10.0 (default=10.0)")
- parser.add_option("-r", "--repetitions", type="int", default=100, help="Number of packets to be generated for the simulation, e.g., -r 100 (default=100)")
-
- (options, args) = parser.parse_args ()
- if len(args) != 0:
- parser.print_help()
- raise SystemExit, 1
-
- fname=options.fsm_file
- esn0_db=float(options.esn0)
- rep=int(options.repetitions)
-
- # system parameters
- f=trellis.fsm(fname) # get the FSM specification from a file (will hopefully be automated in the future...)
- Kb=1024*16 # packet size in bits (make it multiple of 16)
- bitspersymbol = int(round(math.log(f.I())/math.log(2))) # bits per FSM input symbol
- K=Kb/bitspersymbol # packet size in trellis steps
- modulation = fsm_utils.psk4 # see fsm_utils.py for available predefined modulations
- dimensionality = modulation[0]
- constellation = modulation[1]
- if len(constellation)/dimensionality != f.O():
- sys.stderr.write ('Incompatible FSM output cardinality and modulation size.\n')
- sys.exit (1)
- # calculate average symbol energy
- Es = 0
- for i in range(len(constellation)):
- Es = Es + constellation[i]**2
- Es = Es / (len(constellation)/dimensionality)
- N0=Es/pow(10.0,esn0_db/10.0); # noise variance
-
- tot_s=0 # total number of transmitted shorts
- terr_s=0 # total number of shorts in error
- terr_p=0 # total number of packets in error
- for i in range(rep):
- (s,e)=run_test(f,Kb,bitspersymbol,K,dimensionality,constellation,N0,-long(666+i)) # run experiment with different seed to get different noise realizations
- tot_s=tot_s+s
- terr_s=terr_s+e
- terr_p=terr_p+(terr_s!=0)
- if ((i+1)%100==0) : # display progress
- print i+1,terr_p, '%.2e' % ((1.0*terr_p)/(i+1)),tot_s,terr_s, '%.2e' % ((1.0*terr_s)/tot_s)
- # estimate of the (short or bit) error rate
- print rep,terr_p, '%.2e' % ((1.0*terr_p)/(i+1)),tot_s,terr_s, '%.2e' % ((1.0*terr_s)/tot_s)
-
-
-
-if __name__ == '__main__':
- main()
-
diff --git a/gr-trellis/examples/python/test_tcm_parallel.py b/gr-trellis/examples/python/test_tcm_parallel.py
deleted file mode 100755
index b30c80811f..0000000000
--- a/gr-trellis/examples/python/test_tcm_parallel.py
+++ /dev/null
@@ -1,118 +0,0 @@
-#!/usr/bin/env python
-
-from gnuradio import gr
-from gnuradio import trellis, digital, blocks
-from gnuradio import eng_notation
-import math
-import sys
-import fsm_utils
-from gnuradio.eng_option import eng_option
-from optparse import OptionParser
-
-try:
- from gnuradio import analog
-except ImportError:
- sys.stderr.write("Error: Program requires gr-analog.\n")
- sys.exit(1)
-
-def run_test (f,Kb,bitspersymbol,K,dimensionality,constellation,N0,seed,P):
- tb = gr.top_block ()
-
- # TX
- src = blocks.lfsr_32k_source_s()
- src_head = blocks.head(gr.sizeof_short,Kb/16*P) # packet size in shorts
- s2fsmi=blocks.packed_to_unpacked_ss(bitspersymbol,gr.GR_MSB_FIRST) # unpack shorts to symbols compatible with the FSM input cardinality
- s2p = blocks.stream_to_streams(gr.sizeof_short,P) # serial to parallel
- enc = trellis.encoder_ss(f,0) # initiali state = 0
- mod = digital.chunks_to_symbols_sf(constellation,dimensionality)
-
- # CHANNEL
- add=[]
- noise=[]
- for i in range(P):
- add.append(blocks.add_ff())
- noise.append(analog.noise_source_f(analog.GR_GAUSSIAN,math.sqrt(N0/2),seed))
-
- # RX
- metrics = trellis.metrics_f(f.O(),dimensionality,constellation,digital.TRELLIS_EUCLIDEAN) # data preprocessing to generate metrics for Viterbi
- va = trellis.viterbi_s(f,K,0,-1) # Put -1 if the Initial/Final states are not set.
- p2s = blocks.streams_to_stream(gr.sizeof_short,P) # parallel to serial
- fsmi2s=blocks.unpacked_to_packed_ss(bitspersymbol,gr.GR_MSB_FIRST) # pack FSM input symbols to shorts
- dst = blocks.check_lfsr_32k_s()
-
- tb.connect (src,src_head,s2fsmi,s2p)
- for i in range(P):
- tb.connect ((s2p,i),(enc,i),(mod,i))
- tb.connect ((mod,i),(add[i],0))
- tb.connect (noise[i],(add[i],1))
- tb.connect (add[i],(metrics,i))
- tb.connect ((metrics,i),(va,i),(p2s,i))
- tb.connect (p2s,fsmi2s,dst)
-
-
- tb.run()
-
- # A bit of cheating: run the program once and print the
- # final encoder state.
- # Then put it as the last argument in the viterbi block
- #print "final state = " , enc.ST()
-
- ntotal = dst.ntotal ()
- nright = dst.nright ()
- runlength = dst.runlength ()
-
- return (ntotal,ntotal-nright)
-
-
-
-def main():
- parser = OptionParser(option_class=eng_option)
- parser.add_option("-f", "--fsm_file", type="string", default="fsm_files/awgn1o2_4.fsm", help="Filename containing the fsm specification, e.g. -f fsm_files/awgn1o2_4.fsm (default=fsm_files/awgn1o2_4.fsm)")
- parser.add_option("-e", "--esn0", type="eng_float", default=10.0, help="Symbol energy to noise PSD level ratio in dB, e.g., -e 10.0 (default=10.0)")
- parser.add_option("-r", "--repetitions", type="int", default=100, help="Number of packets to be generated for the simulation, e.g., -r 100 (default=100)")
-
- (options, args) = parser.parse_args ()
- if len(args) != 0:
- parser.print_help()
- raise SystemExit, 1
-
- fname=options.fsm_file
- esn0_db=float(options.esn0)
- rep=int(options.repetitions)
-
- # system parameters
- f=trellis.fsm(fname) # get the FSM specification from a file
- P=4 # how many parallel streams?
- Kb=1024*16 # packet size in bits (make it multiple of 16 so it can be packed in a short)
- bitspersymbol = int(round(math.log(f.I())/math.log(2))) # bits per FSM input symbol
- K=Kb/bitspersymbol # packet size in trellis steps
- modulation = fsm_utils.psk4 # see fsm_utlis.py for available predefined modulations
- dimensionality = modulation[0]
- constellation = modulation[1]
- if len(constellation)/dimensionality != f.O():
- sys.stderr.write ('Incompatible FSM output cardinality and modulation size.\n')
- sys.exit (1)
- # calculate average symbol energy
- Es = 0
- for i in range(len(constellation)):
- Es = Es + constellation[i]**2
- Es = Es / (len(constellation)/dimensionality)
- N0=Es/pow(10.0,esn0_db/10.0); # calculate noise variance
-
- tot_s=0 # total number of transmitted shorts
- terr_s=0 # total number of shorts in error
- terr_p=0 # total number of packets in error
- for i in range(rep):
- (s,e)=run_test(f,Kb,bitspersymbol,K,dimensionality,constellation,N0,-long(666+i),P) # run experiment with different seed to get different noise realizations
- tot_s=tot_s+s
- terr_s=terr_s+e
- terr_p=terr_p+(terr_s!=0)
- if ((i+1)%100==0) : # display progress
- print i+1,terr_p, '%.2e' % ((1.0*terr_p)/(i+1)),tot_s,terr_s, '%.2e' % ((1.0*terr_s)/tot_s)
- # estimate of the (short or bit) error rate
- print rep,terr_p, '%.2e' % ((1.0*terr_p)/(i+1)),tot_s,terr_s, '%.2e' % ((1.0*terr_s)/tot_s)
-
-
-if __name__ == '__main__':
- main()
-
diff --git a/gr-trellis/examples/python/test_turbo_equalization.py b/gr-trellis/examples/python/test_turbo_equalization.py
deleted file mode 100755
index b2d58a6014..0000000000
--- a/gr-trellis/examples/python/test_turbo_equalization.py
+++ /dev/null
@@ -1,147 +0,0 @@
-#!/usr/bin/env python
-
-from gnuradio import gr
-from gnuradio import trellis, digital, blocks
-from gnuradio import eng_notation
-import math
-import sys
-import fsm_utils
-
-try:
- from gnuradio import analog
-except ImportError:
- sys.stderr.write("Error: Program requires gr-analog.\n")
- sys.exit(1)
-
-def make_rx(tb,fo,fi,dimensionality,tot_constellation,K,interleaver,IT,Es,N0,type):
- metrics_in = trellis.metrics_f(fi.O(),dimensionality,tot_constellation,digital.TRELLIS_EUCLIDEAN) # data preprocessing to generate metrics for innner SISO
- scale = blocks.multiply_const_ff(1.0/N0)
- gnd = blocks.vector_source_f([0],True);
-
- inter=[]
- deinter=[]
- siso_in=[]
- siso_out=[]
-
- # generate all blocks
- for it in range(IT):
- inter.append( trellis.permutation(interleaver.K(),interleaver.INTER(),fi.I(),gr.sizeof_float) )
- siso_in.append( trellis.siso_f(fi,K,0,-1,True,False,type) )
- deinter.append( trellis.permutation(interleaver.K(),interleaver.DEINTER(),fi.I(),gr.sizeof_float) )
- if it < IT-1:
- siso_out.append( trellis.siso_f(fo,K,0,-1,False,True,type) )
- else:
- siso_out.append( trellis.viterbi_s(fo,K,0,-1) ) # no soft outputs needed
-
- # connect first stage
- tb.connect (gnd,inter[0])
- tb.connect (metrics_in,scale)
- tb.connect (scale,(siso_in[0],1))
-
- # connect the rest
- for it in range(IT):
- if it < IT-1:
- tb.connect (metrics_in,(siso_in[it+1],1))
- tb.connect (siso_in[it],deinter[it],(siso_out[it],1))
- tb.connect (gnd,(siso_out[it],0))
- tb.connect (siso_out[it],inter[it+1])
- tb.connect (inter[it],(siso_in[it],0))
- else:
- tb.connect (siso_in[it],deinter[it],siso_out[it])
- tb.connect (inter[it],(siso_in[it],0))
-
- return (metrics_in,siso_out[IT-1])
-
-
-def run_test (fo,fi,interleaver,Kb,bitspersymbol,K,dimensionality,tot_constellation,Es,N0,IT,seed):
- tb = gr.top_block ()
-
- # TX
- src = blocks.lfsr_32k_source_s()
- src_head = blocks.head(gr.sizeof_short,Kb/16) # packet size in shorts
- s2fsmi = blocks.packed_to_unpacked_ss(bitspersymbol,gr.GR_MSB_FIRST) # unpack shorts to symbols compatible with the iouter FSM input cardinality
- enc_out = trellis.encoder_ss(fo,0) # initial state = 0
- inter = trellis.permutation(interleaver.K(),interleaver.INTER(),1,gr.sizeof_short)
- enc_in = trellis.encoder_ss(fi,0) # initial state = 0
- # essentially here we implement the combination of modulation and channel as a memoryless modulation (the memory induced by the channel is hidden in the innner FSM)
- mod = digital.chunks_to_symbols_sf(tot_constellation,dimensionality)
-
- # CHANNEL
- add = blocks.add_ff()
- noise = analog.noise_source_f(analog.GR_GAUSSIAN,math.sqrt(N0/2),seed)
-
- # RX
- (head,tail) = make_rx(tb,fo,fi,dimensionality,tot_constellation,K,interleaver,IT,Es,N0,trellis.TRELLIS_MIN_SUM)
- fsmi2s = blocks.unpacked_to_packed_ss(bitspersymbol,gr.GR_MSB_FIRST) # pack FSM input symbols to shorts
- dst = blocks.check_lfsr_32k_s();
-
- tb.connect (src,src_head,s2fsmi,enc_out,inter,enc_in,mod)
- tb.connect (mod,(add,0))
- tb.connect (noise,(add,1))
- tb.connect (add,head)
- tb.connect (tail,fsmi2s,dst)
-
- tb.run()
-
- ntotal = dst.ntotal ()
- nright = dst.nright ()
- runlength = dst.runlength ()
- #print ntotal,nright,runlength
-
- return (ntotal,ntotal-nright)
-
-
-
-
-def main(args):
- nargs = len (args)
- if nargs == 3:
- fname_out=args[0]
- esn0_db=float(args[1])
- rep=int(args[2])
- else:
- sys.stderr.write ('usage: test_turbo_equalization.py fsm_name_out Es/No_db repetitions\n')
- sys.exit (1)
-
- # system parameters
- Kb=64*16 # packet size in bits (multiple of 16)
- modulation = fsm_utils.pam4 # see fsm_utlis.py for available predefined modulations
- channel = fsm_utils.c_channel # see fsm_utlis.py for available predefined test channels
- fo=trellis.fsm(fname_out) # get the outer FSM specification from a file
- fi=trellis.fsm(len(modulation[1]),len(channel)) # generate the FSM automatically
- if fo.O() != fi.I():
- sys.stderr.write ('Incompatible cardinality between outer and inner FSM.\n')
- sys.exit (1)
- bitspersymbol = int(round(math.log(fo.I())/math.log(2))) # bits per FSM input symbol
- K=Kb/bitspersymbol # packet size in trellis steps
- print 'size = ',K
- interleaver=trellis.interleaver(K,666) # construct a random interleaver
- tot_channel = fsm_utils.make_isi_lookup(modulation,channel,True) # generate the lookup table (normalize energy to 1)
- dimensionality = tot_channel[0]
- tot_constellation = tot_channel[1]
- if len(tot_constellation)/dimensionality != fi.O():
- sys.stderr.write ('Incompatible FSM output cardinality and lookup table size.\n')
- sys.exit (1)
- N0=pow(10.0,-esn0_db/10.0); # noise variance
- IT = 3 # number of turbo iterations
-
- tot_s=0 # total number of transmitted shorts
- terr_s=0 # total number of shorts in error
- terr_p=0 # total number of packets in error
-
- for i in range(rep):
- (s,e)=run_test(fo,fi,interleaver,Kb,bitspersymbol,K,dimensionality,tot_constellation,1,N0,IT,-long(666+i)) # run experiment with different seed to get different noise realizations
- print s
- tot_s=tot_s+s
- terr_s=terr_s+e
- terr_p=terr_p+(terr_s!=0)
- if ((i+1)%10==0) : # display progress
- print i+1,terr_p, '%.2e' % ((1.0*terr_p)/(i+1)),tot_s,terr_s, '%.2e' % ((1.0*terr_s)/tot_s)
- # estimate of the (short or bit) error rate
- print rep,terr_p, '%.2e' % ((1.0*terr_p)/(i+1)),tot_s,terr_s, '%.2e' % ((1.0*terr_s)/tot_s)
-
-
-
-if __name__ == '__main__':
- main (sys.argv[1:])
-
diff --git a/gr-trellis/examples/python/test_turbo_equalization1.py b/gr-trellis/examples/python/test_turbo_equalization1.py
deleted file mode 100755
index 5ff21ec757..0000000000
--- a/gr-trellis/examples/python/test_turbo_equalization1.py
+++ /dev/null
@@ -1,152 +0,0 @@
-#!/usr/bin/env python
-
-from gnuradio import gr
-from gnuradio import trellis, digital, filter, blocks
-from gnuradio import eng_notation
-import math
-import sys
-import random
-import fsm_utils
-
-try:
- from gnuradio import analog
-except ImportError:
- sys.stderr.write("Error: Program requires gr-analog.\n")
- sys.exit(1)
-
-def make_rx(tb,fo,fi,dimensionality,tot_constellation,K,interleaver,IT,Es,N0,type):
- metrics_in = trellis.metrics_f(fi.O(),dimensionality,tot_constellation,digital.TRELLIS_EUCLIDEAN) # data preprocessing to generate metrics for innner SISO
- scale = blocks.multiply_const_ff(1.0/N0)
- gnd = blocks.vector_source_f([0],True);
-
- inter=[]
- deinter=[]
- siso_in=[]
- siso_out=[]
-
- # generate all blocks
- for it in range(IT):
- inter.append( trellis.permutation(interleaver.K(),interleaver.INTER(),fi.I(),gr.sizeof_float) )
- siso_in.append( trellis.siso_f(fi,K,0,-1,True,False,type) )
- deinter.append( trellis.permutation(interleaver.K(),interleaver.DEINTER(),fi.I(),gr.sizeof_float) )
- if it < IT-1:
- siso_out.append( trellis.siso_f(fo,K,0,-1,False,True,type) )
- else:
- siso_out.append( trellis.viterbi_s(fo,K,0,-1) ) # no soft outputs needed
-
- # connect first stage
- tb.connect (gnd,inter[0])
- tb.connect (metrics_in,scale)
- tb.connect (scale,(siso_in[0],1))
-
- # connect the rest
- for it in range(IT):
- if it < IT-1:
- tb.connect (scale,(siso_in[it+1],1))
- tb.connect (siso_in[it],deinter[it],(siso_out[it],1))
- tb.connect (gnd,(siso_out[it],0))
- tb.connect (siso_out[it],inter[it+1])
- tb.connect (inter[it],(siso_in[it],0))
- else:
- tb.connect (siso_in[it],deinter[it],siso_out[it])
- tb.connect (inter[it],(siso_in[it],0))
-
- return (metrics_in,siso_out[IT-1])
-
-
-def run_test (fo,fi,interleaver,Kb,bitspersymbol,K,channel,modulation,dimensionality,tot_constellation,Es,N0,IT,seed):
- tb = gr.top_block ()
- L = len(channel)
-
- # TX
- # this for loop is TOO slow in python!!!
- packet = [0]*(K)
- random.seed(seed)
- for i in range(len(packet)):
- packet[i] = random.randint(0, 2**bitspersymbol - 1) # random symbols
- src = blocks.vector_source_s(packet,False)
- enc_out = trellis.encoder_ss(fo,0) # initial state = 0
- inter = trellis.permutation(interleaver.K(),interleaver.INTER(),1,gr.sizeof_short)
- mod = digital.chunks_to_symbols_sf(modulation[1],modulation[0])
-
- # CHANNEL
- isi = filter.fir_filter_fff(1,channel)
- add = blocks.add_ff()
- noise = analog.noise_source_f(analog.GR_GAUSSIAN,math.sqrt(N0/2),seed)
-
- # RX
- (head,tail) = make_rx(tb,fo,fi,dimensionality,tot_constellation,K,interleaver,IT,Es,N0,trellis.TRELLIS_MIN_SUM)
- dst = blocks.vector_sink_s();
-
- tb.connect (src,enc_out,inter,mod)
- tb.connect (mod,isi,(add,0))
- tb.connect (noise,(add,1))
- tb.connect (add,head)
- tb.connect (tail,dst)
-
- tb.run()
-
- data = dst.data()
- ntotal = len(data)
- nright=0
- for i in range(ntotal):
- if packet[i]==data[i]:
- nright=nright+1
- #else:
- #print "Error in ", i
-
- return (ntotal,ntotal-nright)
-
-
-
-
-def main(args):
- nargs = len (args)
- if nargs == 3:
- fname_out=args[0]
- esn0_db=float(args[1])
- rep=int(args[2])
- else:
- sys.stderr.write ('usage: test_turbo_equalization.py fsm_name_out Es/No_db repetitions\n')
- sys.exit (1)
-
- # system parameters
- Kb=64*16 # packet size in bits (multiple of 16)
- modulation = fsm_utils.pam4 # see fsm_utlis.py for available predefined modulations
- channel = fsm_utils.c_channel # see fsm_utlis.py for available predefined test channels
- fo=trellis.fsm(fname_out) # get the outer FSM specification from a file
- fi=trellis.fsm(len(modulation[1]),len(channel)) # generate the FSM automatically
- if fo.O() != fi.I():
- sys.stderr.write ('Incompatible cardinality between outer and inner FSM.\n')
- sys.exit (1)
- bitspersymbol = int(round(math.log(fo.I())/math.log(2))) # bits per FSM input symbol
- K=Kb/bitspersymbol # packet size in trellis steps
- interleaver=trellis.interleaver(K,666) # construct a random interleaver
- tot_channel = fsm_utils.make_isi_lookup(modulation,channel,True) # generate the lookup table (normalize energy to 1)
- dimensionality = tot_channel[0]
- tot_constellation = tot_channel[1]
- if len(tot_constellation)/dimensionality != fi.O():
- sys.stderr.write ('Incompatible FSM output cardinality and lookup table size.\n')
- sys.exit (1)
- N0=pow(10.0,-esn0_db/10.0); # noise variance
- IT = 3 # number of turbo iterations
-
- tot_s=0 # total number of transmitted shorts
- terr_s=0 # total number of shorts in error
- terr_p=0 # total number of packets in error
-
- for i in range(rep):
- (s,e)=run_test(fo,fi,interleaver,Kb,bitspersymbol,K,channel,modulation,dimensionality,tot_constellation,1,N0,IT,-long(666+i)) # run experiment with different seed to get different noise realizations
- tot_s=tot_s+s
- terr_s=terr_s+e
- terr_p=terr_p+(terr_s!=0)
- if ((i+1)%10==0) : # display progress
- print i+1,terr_p, '%.2e' % ((1.0*terr_p)/(i+1)),tot_s,terr_s, '%.2e' % ((1.0*terr_s)/tot_s)
- # estimate of the (short or bit) error rate
- print rep,terr_p, '%.2e' % ((1.0*terr_p)/(i+1)),tot_s,terr_s, '%.2e' % ((1.0*terr_s)/tot_s)
-
-
-
-if __name__ == '__main__':
- main (sys.argv[1:])
-
diff --git a/gr-trellis/examples/python/test_turbo_equalization2.py b/gr-trellis/examples/python/test_turbo_equalization2.py
deleted file mode 100755
index c2af9fbfca..0000000000
--- a/gr-trellis/examples/python/test_turbo_equalization2.py
+++ /dev/null
@@ -1,152 +0,0 @@
-#!/usr/bin/env python
-
-from gnuradio import gr
-from gnuradio import trellis, digital, filter, blocks
-from gnuradio import eng_notation
-import math
-import sys
-import random
-import fsm_utils
-
-try:
- from gnuradio import analog
-except ImportError:
- sys.stderr.write("Error: Program requires gr-analog.\n")
- sys.exit(1)
-
-def make_rx(tb,fo,fi,dimensionality,tot_constellation,K,interleaver,IT,Es,N0,type):
- scale = blocks.multiply_const_ff(math.sqrt(1.0/N0))
- gnd = blocks.vector_source_f([0],True);
-
- inter=[]
- deinter=[]
- siso_in=[]
- siso_out=[]
-
- # generate all blocks
- for it in range(IT):
- inter.append( trellis.permutation(interleaver.K(),interleaver.INTER(),fi.I(),gr.sizeof_float) )
- siso_in.append( trellis.siso_combined_f(fi,K,0,-1,True,False,type,dimensionality,tot_constellation,digital.TRELLIS_EUCLIDEAN) )
- deinter.append( trellis.permutation(interleaver.K(),interleaver.DEINTER(),fi.I(),gr.sizeof_float) )
- if it < IT-1:
- siso_out.append( trellis.siso_f(fo,K,0,-1,False,True,type) )
- else:
- siso_out.append( trellis.viterbi_s(fo,K,0,-1) ) # no soft outputs needed
-
- # connect first stage
- tb.connect (gnd,inter[0])
- tb.connect (scale,(siso_in[0],1))
-
- # connect the rest
- for it in range(IT):
- if it < IT-1:
- tb.connect (scale,(siso_in[it+1],1))
- tb.connect (siso_in[it],deinter[it],(siso_out[it],1))
- tb.connect (gnd,(siso_out[it],0))
- tb.connect (siso_out[it],inter[it+1])
- tb.connect (inter[it],(siso_in[it],0))
- else:
- tb.connect (siso_in[it],deinter[it],siso_out[it])
- tb.connect (inter[it],(siso_in[it],0))
-
- return (scale,siso_out[IT-1])
-
-
-def run_test (fo,fi,interleaver,Kb,bitspersymbol,K,channel,modulation,dimensionality,tot_constellation,Es,N0,IT,seed):
- tb = gr.top_block ()
- L = len(channel)
-
- # TX
- # this for loop is TOO slow in python!!!
- packet = [0]*(K)
- random.seed(seed)
- for i in range(len(packet)):
- packet[i] = random.randint(0, 2**bitspersymbol - 1) # random symbols
- src = blocks.vector_source_s(packet,False)
- enc_out = trellis.encoder_ss(fo,0) # initial state = 0
- inter = trellis.permutation(interleaver.K(),interleaver.INTER(),1,gr.sizeof_short)
- mod = digital.chunks_to_symbols_sf(modulation[1],modulation[0])
-
- # CHANNEL
- isi = filter.fir_filter_fff(1,channel)
- add = blocks.add_ff()
- noise = analog.noise_source_f(analog.GR_GAUSSIAN,math.sqrt(N0/2),seed)
-
- # RX
- (head,tail) = make_rx(tb,fo,fi,dimensionality,tot_constellation,K,interleaver,IT,Es,N0,trellis.TRELLIS_MIN_SUM)
- dst = blocks.vector_sink_s();
-
- tb.connect (src,enc_out,inter,mod)
- tb.connect (mod,isi,(add,0))
- tb.connect (noise,(add,1))
- tb.connect (add,head)
- tb.connect (tail,dst)
-
- tb.run()
-
- data = dst.data()
- ntotal = len(data)
- nright=0
- for i in range(ntotal):
- if packet[i]==data[i]:
- nright=nright+1
- #else:
- #print "Error in ", i
-
- return (ntotal,ntotal-nright)
-
-
-
-
-def main(args):
- nargs = len (args)
- if nargs == 3:
- fname_out=args[0]
- esn0_db=float(args[1])
- rep=int(args[2])
- else:
- sys.stderr.write ('usage: test_turbo_equalization.py fsm_name_out Es/No_db repetitions\n')
- sys.exit (1)
-
- # system parameters
- Kb=64*16 # packet size in bits (multiple of 16)
- modulation = fsm_utils.pam4 # see fsm_utlis.py for available predefined modulations
- channel = fsm_utils.c_channel # see fsm_utlis.py for available predefined test channels
- fo=trellis.fsm(fname_out) # get the outer FSM specification from a file
- fi=trellis.fsm(len(modulation[1]),len(channel)) # generate the FSM automatically
- if fo.O() != fi.I():
- sys.stderr.write ('Incompatible cardinality between outer and inner FSM.\n')
- sys.exit (1)
- bitspersymbol = int(round(math.log(fo.I())/math.log(2))) # bits per FSM input symbol
- K=Kb/bitspersymbol # packet size in trellis steps
- interleaver=trellis.interleaver(K,666) # construct a random interleaver
- tot_channel = fsm_utils.make_isi_lookup(modulation,channel,True) # generate the lookup table (normalize energy to 1)
- dimensionality = tot_channel[0]
- N0=pow(10.0,-esn0_db/10.0); # noise variance
- tot_constellation =[0]*len(tot_channel[1])
- for i in range(len(tot_channel[1])):
- tot_constellation[i] = tot_channel[1][i] * math.sqrt(1.0/N0)
- if len(tot_constellation)/dimensionality != fi.O():
- sys.stderr.write ('Incompatible FSM output cardinality and lookup table size.\n')
- sys.exit (1)
- IT = 3 # number of turbo iterations
-
- tot_s=0 # total number of transmitted shorts
- terr_s=0 # total number of shorts in error
- terr_p=0 # total number of packets in error
-
- for i in range(rep):
- (s,e)=run_test(fo,fi,interleaver,Kb,bitspersymbol,K,channel,modulation,dimensionality,tot_constellation,1,N0,IT,-long(666+i)) # run experiment with different seed to get different noise realizations
- tot_s=tot_s+s
- terr_s=terr_s+e
- terr_p=terr_p+(terr_s!=0)
- if ((i+1)%10==0) : # display progress
- print i+1,terr_p, '%.2e' % ((1.0*terr_p)/(i+1)),tot_s,terr_s, '%.2e' % ((1.0*terr_s)/tot_s)
- # estimate of the (short or bit) error rate
- print rep,terr_p, '%.2e' % ((1.0*terr_p)/(i+1)),tot_s,terr_s, '%.2e' % ((1.0*terr_s)/tot_s)
-
-
-
-if __name__ == '__main__':
- main (sys.argv[1:])
-
diff --git a/gr-trellis/examples/python/test_viterbi_equalization.py b/gr-trellis/examples/python/test_viterbi_equalization.py
deleted file mode 100755
index 987f171b2a..0000000000
--- a/gr-trellis/examples/python/test_viterbi_equalization.py
+++ /dev/null
@@ -1,99 +0,0 @@
-#!/usr/bin/env python
-
-from gnuradio import gr
-from gnuradio import trellis, digital, blocks
-from gnuradio import eng_notation
-import math
-import sys
-import fsm_utils
-
-try:
- from gnuradio import analog
-except ImportError:
- sys.stderr.write("Error: Program requires gr-analog.\n")
- sys.exit(1)
-
-def run_test (f,Kb,bitspersymbol,K,dimensionality,tot_constellation,N0,seed):
- tb = gr.top_block ()
-
- # TX
- src = blocks.lfsr_32k_source_s()
- src_head = blocks.head (gr.sizeof_short,Kb/16) # packet size in shorts
- s2fsmi = blocks.packed_to_unpacked_ss(bitspersymbol,gr.GR_MSB_FIRST) # unpack shorts to symbols compatible with the FSM input cardinality
- enc = trellis.encoder_ss(f,0) # initial state = 0
- # essentially here we implement the combination of modulation and channel as a memoryless modulation (the memory induced by the channel is hidden in the FSM)
- mod = digital.chunks_to_symbols_sf(tot_constellation,dimensionality)
-
- # CHANNEL
- add = blocks.add_ff()
- noise = analog.noise_source_f(analog.GR_GAUSSIAN,math.sqrt(N0/2),seed)
-
- # RX
- metrics = trellis.metrics_f(f.O(),dimensionality,tot_constellation,digital.TRELLIS_EUCLIDEAN) # data preprocessing to generate metrics for Viterbi
- va = trellis.viterbi_s(f,K,0,-1) # Put -1 if the Initial/Final states are not set.
- fsmi2s = blocks.unpacked_to_packed_ss(bitspersymbol,gr.GR_MSB_FIRST) # pack FSM input symbols to shorts
- dst = blocks.check_lfsr_32k_s();
-
- tb.connect (src,src_head,s2fsmi,enc,mod)
- tb.connect (mod,(add,0))
- tb.connect (noise,(add,1))
- tb.connect (add,metrics)
- tb.connect (metrics,va,fsmi2s,dst)
-
- tb.run()
-
- ntotal = dst.ntotal ()
- nright = dst.nright ()
- runlength = dst.runlength ()
- #print ntotal,nright,runlength
-
- return (ntotal,ntotal-nright)
-
-
-
-
-def main(args):
- nargs = len (args)
- if nargs == 2:
- esn0_db=float(args[0])
- rep=int(args[1])
- else:
- sys.stderr.write ('usage: test_viterbi_equalization.py Es/No_db repetitions\n')
- sys.exit (1)
-
- # system parameters
- Kb=128*16 # packet size in bits (multiple of 16)
- modulation = fsm_utils.pam4 # see fsm_utlis.py for available predefined modulations
- channel = fsm_utils.c_channel # see fsm_utlis.py for available predefined test channels
- f=trellis.fsm(len(modulation[1]),len(channel)) # generate the FSM automatically
- bitspersymbol = int(round(math.log(f.I())/math.log(2))) # bits per FSM input symbol
- K=Kb/bitspersymbol # packet size in trellis steps
-
- tot_channel = fsm_utils.make_isi_lookup(modulation,channel,True) # generate the lookup table (normalize energy to 1)
- dimensionality = tot_channel[0]
- tot_constellation = tot_channel[1]
- N0=pow(10.0,-esn0_db/10.0); # noise variance
- if len(tot_constellation)/dimensionality != f.O():
- sys.stderr.write ('Incompatible FSM output cardinality and lookup table size.\n')
- sys.exit (1)
-
-
- tot_s=0 # total number of transmitted shorts
- terr_s=0 # total number of shorts in error
- terr_p=0 # total number of packets in error
-
- for i in range(rep):
- (s,e)=run_test(f,Kb,bitspersymbol,K,dimensionality,tot_constellation,N0,-long(666+i)) # run experiment with different seed to get different noise realizations
- tot_s=tot_s+s
- terr_s=terr_s+e
- terr_p=terr_p+(terr_s!=0)
- if ((i+1)%100==0) : # display progress
- print i+1,terr_p, '%.2e' % ((1.0*terr_p)/(i+1)),tot_s,terr_s, '%.2e' % ((1.0*terr_s)/tot_s)
- # estimate of the (short or bit) error rate
- print rep,terr_p, '%.2e' % ((1.0*terr_p)/(i+1)),tot_s,terr_s, '%.2e' % ((1.0*terr_s)/tot_s)
-
-
-
-if __name__ == '__main__':
- main (sys.argv[1:])
-
diff --git a/gr-trellis/examples/python/test_viterbi_equalization1.py b/gr-trellis/examples/python/test_viterbi_equalization1.py
deleted file mode 100755
index baa6a27f1b..0000000000
--- a/gr-trellis/examples/python/test_viterbi_equalization1.py
+++ /dev/null
@@ -1,108 +0,0 @@
-#!/usr/bin/env python
-
-from gnuradio import gr
-from gnuradio import trellis, digital, filter, blocks
-from gnuradio import eng_notation
-import math
-import sys
-import random
-import fsm_utils
-
-try:
- from gnuradio import analog
-except ImportError:
- sys.stderr.write("Error: Program requires gr-analog.\n")
- sys.exit(1)
-
-def run_test (f,Kb,bitspersymbol,K,channel,modulation,dimensionality,tot_constellation,N0,seed):
- tb = gr.top_block ()
- L = len(channel)
-
- # TX
- # this for loop is TOO slow in python!!!
- packet = [0]*(K+2*L)
- random.seed(seed)
- for i in range(len(packet)):
- packet[i] = random.randint(0, 2**bitspersymbol - 1) # random symbols
- for i in range(L): # first/last L symbols set to 0
- packet[i] = 0
- packet[len(packet)-i-1] = 0
- src = blocks.vector_source_s(packet,False)
- mod = digital.chunks_to_symbols_sf(modulation[1],modulation[0])
-
- # CHANNEL
- isi = filter.fir_filter_fff(1,channel)
- add = blockss.add_ff()
- noise = analog.noise_source_f(analog.GR_GAUSSIAN,math.sqrt(N0/2),seed)
-
- # RX
- skip = blocks.skiphead(gr.sizeof_float, L) # skip the first L samples since you know they are coming from the L zero symbols
- #metrics = trellis.metrics_f(f.O(),dimensionality,tot_constellation,digital.TRELLIS_EUCLIDEAN) # data preprocessing to generate metrics for Viterbi
- #va = trellis.viterbi_s(f,K+L,-1,0) # Put -1 if the Initial/Final states are not set.
- va = trellis.viterbi_combined_fs(f,K+L,0,0,dimensionality,tot_constellation,digital.TRELLIS_EUCLIDEAN) # using viterbi_combined_fs instead of metrics_f/viterbi_s allows larger packet lengths because metrics_f is complaining for not being able to allocate large buffers. This is due to the large f.O() in this application...
- dst = blocks.vector_sink_s()
-
- tb.connect (src,mod)
- tb.connect (mod,isi,(add,0))
- tb.connect (noise,(add,1))
- #tb.connect (add,metrics)
- #tb.connect (metrics,va,dst)
- tb.connect (add,skip,va,dst)
-
- tb.run()
-
- data = dst.data()
- ntotal = len(data) - L
- nright=0
- for i in range(ntotal):
- if packet[i+L]==data[i]:
- nright=nright+1
- #else:
- #print "Error in ", i
-
- return (ntotal,ntotal-nright)
-
-
-def main(args):
- nargs = len (args)
- if nargs == 2:
- esn0_db=float(args[0])
- rep=int(args[1])
- else:
- sys.stderr.write ('usage: test_viterbi_equalization1.py Es/No_db repetitions\n')
- sys.exit (1)
-
- # system parameters
- Kb=128*16 # packet size in bits (multiple of 16)
- modulation = fsm_utils.pam4 # see fsm_utlis.py for available predefined modulations
- channel = fsm_utils.c_channel # see fsm_utlis.py for available predefined test channels
- f=trellis.fsm(len(modulation[1]),len(channel)) # generate the FSM automatically
- bitspersymbol = int(round(math.log(f.I())/math.log(2))) # bits per FSM input symbol
- K=Kb/bitspersymbol # packet size in trellis steps
-
- tot_channel = fsm_utils.make_isi_lookup(modulation,channel,True) # generate the lookup table (normalize energy to 1)
- dimensionality = tot_channel[0]
- tot_constellation = tot_channel[1]
- N0=pow(10.0,-esn0_db/10.0); # noise variance
- if len(tot_constellation)/dimensionality != f.O():
- sys.stderr.write ('Incompatible FSM output cardinality and lookup table size.\n')
- sys.exit (1)
-
- tot_s=0 # total number of transmitted shorts
- terr_s=0 # total number of shorts in error
- terr_p=0 # total number of packets in error
-
- for i in range(rep):
- (s,e)=run_test(f,Kb,bitspersymbol,K,channel,modulation,dimensionality,tot_constellation,N0,-long(666+i)) # run experiment with different seed to get different noise realizations
- tot_s=tot_s+s
- terr_s=terr_s+e
- terr_p=terr_p+(terr_s!=0)
- if ((i+1)%100==0) : # display progress
- print i+1,terr_p, '%.2e' % ((1.0*terr_p)/(i+1)),tot_s,terr_s, '%.2e' % ((1.0*terr_s)/tot_s)
- # estimate of the (short or symbol) error rate
- print rep,terr_p, '%.2e' % ((1.0*terr_p)/(i+1)),tot_s,terr_s, '%.2e' % ((1.0*terr_s)/tot_s)
-
-
-
-if __name__ == '__main__':
- main (sys.argv[1:])