summaryrefslogtreecommitdiff
path: root/gr-digital/python/digital
diff options
context:
space:
mode:
authorDavid Pi <david.pinho@gmail.com>2021-07-17 13:25:03 +0100
committermormj <34754695+mormj@users.noreply.github.com>2021-09-07 09:58:26 -0400
commit0a4225dc9dd9e4d3c5ad58d40570d40d59f5670f (patch)
tree5c426ddd4217b38caf81592ed9fe4656aa0fa25e /gr-digital/python/digital
parent3eb08389106e29354ba3de4827c632373664f909 (diff)
gr-digital: Fix constellation normalization by average power
Correct power normalization calculation. Add a qa test for amplitude and power normalization. Signed-off-by: David Pi <david.pinho@gmail.com>
Diffstat (limited to 'gr-digital/python/digital')
-rw-r--r--gr-digital/python/digital/qa_constellation.py23
1 files changed, 22 insertions, 1 deletions
diff --git a/gr-digital/python/digital/qa_constellation.py b/gr-digital/python/digital/qa_constellation.py
index d13dae376e..7c9984405f 100644
--- a/gr-digital/python/digital/qa_constellation.py
+++ b/gr-digital/python/digital/qa_constellation.py
@@ -16,7 +16,8 @@ import numpy
from gnuradio import gr, gr_unittest, digital, blocks
from gnuradio.digital.utils import mod_codes
-from gnuradio.digital import psk, qam, qamlike
+from gnuradio.digital import constellation, psk, qam, qamlike
+import numpy as np
tested_mod_codes = (mod_codes.NO_CODE, mod_codes.GRAY_CODE)
@@ -178,6 +179,26 @@ class test_constellation(gr_unittest.TestCase):
def tearDown(self):
pass
+ def test_normalization(self):
+ rot_sym = 1
+ side = 2
+ width = 2
+ # Test a couple of basic constellations
+ for constel_points, code in (digital.psk_4_0(), digital.qam_16_0()):
+ constel = digital.constellation_rect(constel_points, code, rot_sym,
+ side, side, width, width,
+ constellation.POWER_NORMALIZATION)
+
+ points = np.array(constel.points())
+ avg_power = np.sum(abs(points)**2) / len(points)
+ self.assertAlmostEqual(avg_power, 1.0, 6)
+ constel = digital.constellation_rect(constel_points, code, rot_sym,
+ side, side, width, width,
+ constellation.AMPLITUDE_NORMALIZATION)
+ points = np.array(constel.points())
+ avg_amp = np.sum(abs(points)) / len(points)
+ self.assertAlmostEqual(avg_amp, 1.0, 6)
+
def test_hard_decision(self):
for constellation, differential in tested_constellations():
if differential: