summaryrefslogtreecommitdiff
path: root/gr-blocks/python
diff options
context:
space:
mode:
authorSebastian Müller <senpo@posteo.de>2017-09-30 23:50:21 +0200
committerSebastian Müller <senpo@posteo.de>2017-09-30 23:50:21 +0200
commite30ce800d374db2e0b0e7c0ee9f3d6acf0a12161 (patch)
tree50ffdd22ea40461f5e70f7f0c4154467dba8f13f /gr-blocks/python
parentbbed667ecc7ff1ced67fbc87ac66f2b5299a4dc0 (diff)
[gr-blocks] improve moving_average unit test
Diffstat (limited to 'gr-blocks/python')
-rw-r--r--gr-blocks/python/blocks/qa_moving_average.py65
1 files changed, 65 insertions, 0 deletions
diff --git a/gr-blocks/python/blocks/qa_moving_average.py b/gr-blocks/python/blocks/qa_moving_average.py
index 2c58805925..53b240fe7f 100644
--- a/gr-blocks/python/blocks/qa_moving_average.py
+++ b/gr-blocks/python/blocks/qa_moving_average.py
@@ -45,6 +45,10 @@ class test_moving_average(gr_unittest.TestCase):
def tearDown(self):
self.tb = None
+ # These tests will always pass and are therefore useless. 100 random numbers [-1,1) are
+ # getting summed up and scaled with 0.001. Then, an assertion verifies a result near 0,
+ # which is the case even if the block is malfunctioning.
+
def test_01(self):
tb = self.tb
@@ -87,5 +91,66 @@ class test_moving_average(gr_unittest.TestCase):
# make sure result is close to zero
self.assertComplexTuplesAlmostEqual(expected_result, dst_data, 1)
+ # This tests implement own moving average to verify correct behaviour of the block
+
+ def test_03(self):
+ tb = self.tb
+
+ N = 10000 # number of samples
+ history = 100 # num of samples to average
+ data = make_random_float_tuple(N, 1) # generate random data
+
+ # pythonic MA filter
+ data_padded = (history-1)*[0.0]+list(data) # history
+ expected_result = []
+ moving_sum = sum(data_padded[:history-1])
+ for i in range(N):
+ moving_sum += data_padded[i+history-1]
+ expected_result.append(moving_sum)
+ moving_sum -= data_padded[i]
+
+ src = blocks.vector_source_f(data, False)
+ op = blocks.moving_average_ff(history, 1)
+ dst = blocks.vector_sink_f()
+
+ tb.connect(src, op)
+ tb.connect(op, dst)
+ tb.run()
+
+ dst_data = dst.data()
+
+ # make sure result is close to zero
+ self.assertFloatTuplesAlmostEqual(expected_result, dst_data, 4)
+
+ def test_04(self):
+ tb = self.tb
+
+ N = 10000 # number of samples
+ history = 100 # num of samples to average
+ data = make_random_complex_tuple(N, 1) # generate random data
+
+ # pythonic MA filter
+ data_padded = (history-1)*[0.0+1j*0.0]+list(data) # history
+ expected_result = []
+ moving_sum = sum(data_padded[:history-1])
+ for i in range(N):
+ moving_sum += data_padded[i+history-1]
+ expected_result.append(moving_sum)
+ moving_sum -= data_padded[i]
+
+ src = blocks.vector_source_c(data, False)
+ op = blocks.moving_average_cc(history, 1)
+ dst = blocks.vector_sink_c()
+
+ tb.connect(src, op)
+ tb.connect(op, dst)
+ tb.run()
+
+ dst_data = dst.data()
+
+ # make sure result is close to zero
+ self.assertComplexTuplesAlmostEqual(expected_result, dst_data, 4)
+
+
if __name__ == '__main__':
gr_unittest.run(test_moving_average, "test_moving_average.xml")