summaryrefslogtreecommitdiff
path: root/gr-blocks/python
diff options
context:
space:
mode:
authorJohnathan Corgan <johnathan@corganlabs.com>2017-10-05 16:09:55 -0700
committerJohnathan Corgan <johnathan@corganlabs.com>2017-10-05 16:36:29 -0700
commit3c63f7334d6de70d655aa97fcccbfb950645f4d4 (patch)
treeac06cdb228d00e02fcab9a47852bfc57b5957d0c /gr-blocks/python
parent8fe518ce740ae728f658c1854a7ffa074e800e9d (diff)
parenta0adcd3347c7ffd6ef3c42ce7705a23978774d3b (diff)
Merge branch 'master' into next
Conflicts: gr-digital/examples/CMakeLists.txt gr-uhd/lib/usrp_source_impl.cc gr-uhd/lib/usrp_source_impl.h
Diffstat (limited to 'gr-blocks/python')
-rw-r--r--gr-blocks/python/blocks/qa_moving_average.py68
1 files changed, 67 insertions, 1 deletions
diff --git a/gr-blocks/python/blocks/qa_moving_average.py b/gr-blocks/python/blocks/qa_moving_average.py
index 2c58805925..b76f81392d 100644
--- a/gr-blocks/python/blocks/qa_moving_average.py
+++ b/gr-blocks/python/blocks/qa_moving_average.py
@@ -1,6 +1,6 @@
#!/usr/bin/env python
#
-# Copyright 2013 Free Software Foundation, Inc.
+# Copyright 2013,2017 Free Software Foundation, Inc.
#
# This file is part of GNU Radio
#
@@ -45,6 +45,10 @@ class test_moving_average(gr_unittest.TestCase):
def tearDown(self):
self.tb = None
+ # These tests will always pass and are therefore useless. 100 random numbers [-1,1) are
+ # getting summed up and scaled with 0.001. Then, an assertion verifies a result near 0,
+ # which is the case even if the block is malfunctioning.
+
def test_01(self):
tb = self.tb
@@ -87,5 +91,67 @@ class test_moving_average(gr_unittest.TestCase):
# make sure result is close to zero
self.assertComplexTuplesAlmostEqual(expected_result, dst_data, 1)
+ # This tests implement own moving average to verify correct behaviour of the block
+
+ def test_03(self):
+ tb = self.tb
+
+ vlen = 5
+ N = 10*vlen
+ seed = 0
+ data = make_random_float_tuple(N, 2**10)
+ data = [int(d*1000) for d in data]
+ src = blocks.vector_source_i(data, False)
+ one_to_many = blocks.stream_to_streams(gr.sizeof_int, vlen)
+ one_to_vector = blocks.stream_to_vector(gr.sizeof_int, vlen)
+ many_to_vector = blocks.streams_to_vector(gr.sizeof_int, vlen)
+ isolated = [ blocks.moving_average_ii(100, 1) for i in range(vlen)]
+ dut = blocks.moving_average_ii(100, 1, vlen=vlen)
+ dut_dst = blocks.vector_sink_i(vlen=vlen)
+ ref_dst = blocks.vector_sink_i(vlen=vlen)
+
+ tb.connect(src, one_to_many)
+ tb.connect(src, one_to_vector, dut, dut_dst)
+ tb.connect(many_to_vector, ref_dst)
+ for idx, single in enumerate(isolated):
+ tb.connect((one_to_many,idx), single, (many_to_vector,idx))
+
+ tb.run()
+
+ dut_data = dut_dst.data()
+ ref_data = ref_dst.data()
+
+ # make sure result is close to zero
+ self.assertTupleEqual(dut_data, ref_data)
+
+ def test_04(self):
+ tb = self.tb
+
+ N = 10000 # number of samples
+ history = 100 # num of samples to average
+ data = make_random_complex_tuple(N, 1) # generate random data
+
+ # pythonic MA filter
+ data_padded = (history-1)*[0.0+1j*0.0]+list(data) # history
+ expected_result = []
+ moving_sum = sum(data_padded[:history-1])
+ for i in range(N):
+ moving_sum += data_padded[i+history-1]
+ expected_result.append(moving_sum)
+ moving_sum -= data_padded[i]
+
+ src = blocks.vector_source_c(data, False)
+ op = blocks.moving_average_cc(history, 1)
+ dst = blocks.vector_sink_c()
+
+ tb.connect(src, op)
+ tb.connect(op, dst)
+ tb.run()
+
+ dst_data = dst.data()
+
+ # make sure result is close to zero
+ self.assertComplexTuplesAlmostEqual(expected_result, dst_data, 4)
+
if __name__ == '__main__':
gr_unittest.run(test_moving_average, "test_moving_average.xml")