summaryrefslogtreecommitdiff
path: root/gr-blocks/python
diff options
context:
space:
mode:
authorMarcus Müller <mueller@kit.edu>2017-09-08 19:27:52 +0200
committerMarcus Müller <mueller@kit.edu>2017-09-08 19:30:00 +0200
commit295f5a6030437380562a339acdd95cc755572a37 (patch)
treee3e6113b6cd793f0d418c40be2e233d5aeb473b3 /gr-blocks/python
parent34933ac6bc9be665b916be146cf040197fc19229 (diff)
Added a vector operation mode to the moving average
This allows users to average per-element. Might be very useful for spectrum "condensing" and such.
Diffstat (limited to 'gr-blocks/python')
-rw-r--r--gr-blocks/python/blocks/qa_moving_average.py38
1 files changed, 37 insertions, 1 deletions
diff --git a/gr-blocks/python/blocks/qa_moving_average.py b/gr-blocks/python/blocks/qa_moving_average.py
index 2c58805925..f5b17912f5 100644
--- a/gr-blocks/python/blocks/qa_moving_average.py
+++ b/gr-blocks/python/blocks/qa_moving_average.py
@@ -1,6 +1,6 @@
#!/usr/bin/env python
#
-# Copyright 2013 Free Software Foundation, Inc.
+# Copyright 2013,2017 Free Software Foundation, Inc.
#
# This file is part of GNU Radio
#
@@ -87,5 +87,41 @@ class test_moving_average(gr_unittest.TestCase):
# make sure result is close to zero
self.assertComplexTuplesAlmostEqual(expected_result, dst_data, 1)
+ def test_03(self):
+ tb = self.tb
+
+ print "setting up"
+ vlen = 5
+ N = 10*vlen
+ seed = 0
+ data = make_random_float_tuple(N, 2**10)
+ data = [int(d*1000) for d in data]
+ print "making blocks"
+ src = blocks.vector_source_i(data, False)
+ one_to_many = blocks.stream_to_streams(gr.sizeof_int, vlen)
+ one_to_vector = blocks.stream_to_vector(gr.sizeof_int, vlen)
+ many_to_vector = blocks.streams_to_vector(gr.sizeof_int, vlen)
+ isolated = [ blocks.moving_average_ii(100, 1) for i in range(vlen)]
+ dut = blocks.moving_average_ii(100, 1, vlen=vlen)
+ dut_dst = blocks.vector_sink_i(vlen=vlen)
+ ref_dst = blocks.vector_sink_i(vlen=vlen)
+
+ print "connecting"
+ tb.connect(src, one_to_many)
+ tb.connect(src, one_to_vector, dut, dut_dst)
+ tb.connect(many_to_vector, ref_dst)
+ for idx, single in enumerate(isolated):
+ tb.connect((one_to_many,idx), single, (many_to_vector,idx))
+
+
+ print "running"
+ tb.run()
+
+ print "comparing"
+ dut_data = dut_dst.data()
+ ref_data = ref_dst.data()
+
+ # make sure result is close to zero
+ self.assertTupleEqual(dut_data, ref_data)
if __name__ == '__main__':
gr_unittest.run(test_moving_average, "test_moving_average.xml")