summaryrefslogtreecommitdiff
path: root/gr-analog/grc/analog_quadrature_demod_cf.xml
diff options
context:
space:
mode:
authorHåkon Vågsether <haakonsv@gmail.com>2017-09-24 12:16:22 +0200
committerHåkon Vågsether <haakonsv@gmail.com>2017-10-10 10:49:36 +0200
commitbaf7eaf8f29d5a490f2580917362cf5b3db47281 (patch)
tree7afab4ee2dfa6439ecf95d47aa68996020ea04c5 /gr-analog/grc/analog_quadrature_demod_cf.xml
parent6fa9d33246251f44a0e78682e50e9a1cb0b03171 (diff)
Added auto-generated YAML blocks
Diffstat (limited to 'gr-analog/grc/analog_quadrature_demod_cf.xml')
-rw-r--r--gr-analog/grc/analog_quadrature_demod_cf.xml55
1 files changed, 0 insertions, 55 deletions
diff --git a/gr-analog/grc/analog_quadrature_demod_cf.xml b/gr-analog/grc/analog_quadrature_demod_cf.xml
deleted file mode 100644
index 447acf2ed8..0000000000
--- a/gr-analog/grc/analog_quadrature_demod_cf.xml
+++ /dev/null
@@ -1,55 +0,0 @@
-<?xml version="1.0"?>
-<!--
-###################################################
-##Quadrature Demodulator
-###################################################
- -->
-<block>
- <name>Quadrature Demod</name>
- <key>analog_quadrature_demod_cf</key>
- <import>from gnuradio import analog</import>
- <import>import math</import>
- <make>analog.quadrature_demod_cf($gain)</make>
- <callback>set_gain($gain)</callback>
- <param>
- <name>Gain</name>
- <key>gain</key>
- <value>samp_rate/(2*math.pi*fsk_deviation_hz/8.0)</value>
- <type>real</type>
- </param>
- <sink>
- <name>in</name>
- <type>complex</type>
- </sink>
- <source>
- <name>out</name>
- <type>float</type>
- </source>
- <doc>
-This can be used to demod FM, FSK, GMSK, etc. The input is complex
-baseband, output is the signal frequency in relation to the sample
-rated, multiplied with the gain.
-
-Mathematically, this block calculates the product of the one-sample
-delayed input and the conjugate undelayed signal, and then calculates
-the argument of the resulting complex number:
-
-y[n] = \mathrm{arg}\left(x[n] \, \bar x [n-1]\right).
-
-Let x be a complex sinusoid with amplitude A>0, (absolute)
-frequency f\in\mathbb R and phase \phi_0\in[0;2\pi] sampled at
-f_s>0 so, without loss of generality,
-
-x[n]= A e^{j2\pi( \frac f{f_s} n + \phi_0)}\f
-
-then
-
-y[n] = \mathrm{arg}\left(A e^{j2\pi\left( \frac f{f_s} n + \phi_0\right)} \overline{A e^{j2\pi( \frac f{f_s} (n-1) + \phi_0)}}\right)\\
- = \mathrm{arg}\left(A^2 e^{j2\pi\left( \frac f{f_s} n + \phi_0\right)} e^{-j2\pi( \frac f{f_s} (n-1) + \phi_0)}\right)\\
- = \mathrm{arg}\left( A^2 e^{j2\pi\left( \frac f{f_s} n + \phi_0 - \frac f{f_s} (n-1) - \phi_0\right)}\right)\\
- = \mathrm{arg}\left( A^2 e^{j2\pi\left( \frac f{f_s} n - \frac f{f_s} (n-1)\right)}\right)\\
- = \mathrm{arg}\left( A^2 e^{j2\pi\left( \frac f{f_s} \left(n-(n-1)\right)\right)}\right)\\
- = \mathrm{arg}\left( A^2 e^{j2\pi \frac f{f_s}}\right) \intertext{$A$ is real, so is $A^2$ and hence only \textit{scales}, therefore $\mathrm{arg}(\cdot)$ is invariant:} = \mathrm{arg}\left(e^{j2\pi \frac f{f_s}}\right)\\
-= \frac f{f_s}\\
- </doc>
-</block>