summaryrefslogtreecommitdiff
path: root/docs/doxygen
diff options
context:
space:
mode:
authorTom Rondeau <trondeau@vt.edu>2012-12-18 15:36:17 -0500
committerTom Rondeau <trondeau@vt.edu>2012-12-18 15:36:17 -0500
commit34c9ee546b0fba7b3938170bf228e5f6c2991fdb (patch)
tree658dd468e76a89988b548d9af575bd8227ca59b4 /docs/doxygen
parente39fae92a396aa984cba96a8bfd5cfe562ed7008 (diff)
parent620dd7ece3789220d0b46259a95752d8da7af730 (diff)
Merge branch 'master' into next
Diffstat (limited to 'docs/doxygen')
-rw-r--r--docs/doxygen/other/main_page.dox6
-rw-r--r--docs/doxygen/other/msg_passing.dox269
-rw-r--r--docs/doxygen/other/pmt.dox348
3 files changed, 623 insertions, 0 deletions
diff --git a/docs/doxygen/other/main_page.dox b/docs/doxygen/other/main_page.dox
index 15a56d0dec..681dea41c8 100644
--- a/docs/doxygen/other/main_page.dox
+++ b/docs/doxygen/other/main_page.dox
@@ -37,6 +37,12 @@ More details on packages in GNU Radio:
\li \ref page_qtgui
\li \ref page_uhd
\li \ref page_vocoder
+
+More details on GNU Radio concepts:
+\li \ref page_pmt
+\li \ref page_msg_passing
+\li \ref page_metadata
+\li \ref volk_guide
\li \ref page_pfb
diff --git a/docs/doxygen/other/msg_passing.dox b/docs/doxygen/other/msg_passing.dox
new file mode 100644
index 0000000000..aea0ac94ae
--- /dev/null
+++ b/docs/doxygen/other/msg_passing.dox
@@ -0,0 +1,269 @@
+/*! \page page_msg_passing Message Passing
+
+\section intro Introduction
+
+GNU Radio was originally a streaming system with no other mechanism to
+pass data between blocks. Streams of data are a model that work well
+for samples, bits, etc., but are not really the right mechanism for
+control data, metadata, and, often, packet structures (at least at
+some point in the processing chain).
+
+We solved part of this problem a few years ago by introducing the tag
+stream. This is a parallel stream to the data streaming. The
+difference is that tags are designed to hold metadata and control
+information. Tags are specifically associated with a particular sample
+in the data stream and flow downstream alongside the data. This model
+allows other blocks to identify that an event or action has occurred
+or should occur on a particular item. The major limitation is that the
+tag stream is really only accessible inside a work function and only
+flows in one direction. Its benefit is that it is isosynchronous with
+the data.
+
+We want a more general message passing system for a couple of
+reasons. The first is to allow blocks downstream to communicate back
+to blocks upstream. The second is to allow an easier way for us to
+communicate back and forth between external applications and GNU
+Radio. The new message passing interface handles these cases, although
+it does so on an asynchronous basis.
+
+The message passing interface heavily relies on Polymorphic Types
+(PMTs) in GNU Radio. For further information about these data
+structures, see the page \ref page_pmt.
+
+\section api Message Passing API
+
+The message passing interface is designed into the gr_basic_block,
+which is the parent class for all blocks in GNU Radio. Each block has
+a set of message queues to hold incoming messages and can post
+messages to the message queues of other blocks. The blocks also
+distinguish between input and output ports.
+
+A block has to declare its input and output message ports in its
+constructor. The message ports are described by a name, which is in
+practice a PMT symbol (<em>i.e.</em>, an interned string). The API calls
+to register a new port are:
+
+\code
+ void message_port_register_in(pmt::pmt_t port_id)
+ void message_port_register_out(pmt::pmt_t port_id)
+\endcode
+
+The ports are now identifiable by that port name. Other blocks who may
+want to post or receive messages on a port must subscribe to it. When
+a block has a message to send, they are published on a particular
+port. The subscribe and publish API looks like:
+
+\code
+ void message_port_pub(pmt::pmt_t port_id,
+ pmt::pmt_t msg);
+ void message_port_sub(pmt::pmt_t port_id,
+ pmt::pmt_t target);
+ void message_port_unsub(pmt::pmt_t port_id,
+ pmt::pmt_t target);
+\endcode
+
+Any block that has a subscription to another block's output message
+port will receive the message when it is published. Internally, when a
+block publishes a message, it simply iterates through all blocks that
+have subscribed and uses the gr_basic_block::_post method to send the
+message to that block's message queue.
+
+From the flowgraph level, we have instrumented a gr_hier_block2::msg_connect
+method to make it easy to subscribe blocks to other blocks'
+messages. The message connection method looks like the following
+code. Assume that the block \b src has an output message port named
+\a pdus and the block \b dbg has an input port named \a print.
+
+\code
+ self.tb.msg_connect(src, "pdus", dbg, "print")
+\endcode
+
+All messages published by the \b src block on port \a pdus will be
+received by \b dbg on port \a print. Note here how we are just using
+strings to define the ports, not PMT symbols. This is a convenience to
+the user to be able to more easily type in the port names (for
+reference, you can create a PMT symbol in Python using the
+pmt::pmt_intern function as pmt.pmt_intern("string")).
+
+Users can also query blocks for the names of their input and output
+ports using the following API calls:
+
+\code
+ pmt::pmt_t message_ports_in();
+ pmt::pmt_t message_ports_out();
+\endcode
+
+The return value for these are a PMT vector filled with PMT symbols,
+so PMT operators must be used to manipulate them.
+
+Each block has internal methods to handle posting and receiving of
+messages. The gr_basic_block::_post method takes in a message and
+places it into its queue. The publishing model uses the
+gr_basic_block::_post method of the blocks as the way to access the
+message queue. So the message queue of the right name will have a new
+message. Posting messages also has the benefit of waking up the
+block's thread if it is in a wait state. So if idle, as soon as a
+message is posted, it will wake up and and call the message handler.
+
+The other side of the action in a block is in the message
+handler. When a block has an input message port, it needs a callback
+function to handle messages received on that port. We use a Boost bind
+operator to bind the message port to the message handling
+function. When a new message is pushed onto a port's message queue,
+it is this function that is used to process the message.
+
+
+\section examples Code Examples
+
+The following is snippets of code from blocks current in GNU Radio
+that take advantage of message passing. We will be using
+gr_message_debug and gr_tagged_stream_to_pdu below to show setting up
+both input and output message passing capabilities.
+
+The gr_message_debug block is used for debugging the message passing
+system. It describes two input message ports: \a print and \a
+store. The \a print port simply prints out all messages to standard
+out while the \a store port keeps a list of all messages posted to
+it. This latter port works in conjunction with a
+gr_message_debug::get_message(int i) call that allows us to retrieve
+message \p i afterward.
+
+The constructor of this block looks like this:
+
+\code
+{
+ message_port_register_in(pmt::mp("print"));
+ set_msg_handler(pmt::mp("print"),
+ boost::bind(&gr_message_debug::print, this, _1));
+
+ message_port_register_in(pmt::mp("store"));
+ set_msg_handler(pmt::mp("store"),
+ boost::bind(&gr_message_debug::store, this, _1));
+}
+\endcode
+
+So the two ports are registered by their respective names. We then use
+the gr_basic_block::set_msg_handler function to identify this
+particular port name with a callback function. The Boost \a bind
+function (<a target="_blank"
+href="http://www.boost.org/doc/libs/1_52_0/libs/bind/bind.html">Boost::bind</a>)
+here binds the callback to a function of this block's class. So now
+the block's gr_message_debug::print and gr_message_debug::store
+functions are assigned to handle messages passed to them. Below is the
+\a print function for reference.
+
+\code
+void
+gr_message_debug::print(pmt::pmt_t msg)
+{
+ std::cout << "***** MESSAGE DEBUG PRINT ********\n";
+ pmt::pmt_print(msg);
+ std::cout << "**********************************\n";
+}
+\endcode
+
+The function simply takes in the PMT message and prints it. The method
+pmt::pmt_print is a function in the PMT library to print the
+PMT in a friendly, (mostly) pretty manner.
+
+The gr_tagged_stream_to_pdu block only defines a single
+output message port. In this case, its constructor looks like:
+
+\code
+{
+ message_port_register_out(pdu_port_id);
+}
+\endcode
+
+So we are only creating a single output port where \a pdu_port_id
+is defined in the file gr_pdu.h as \a pdus.
+
+This blocks purpose is to take in a stream of samples along with
+stream tags and construct a predefined PDU message from this. In GNU
+Radio, we define a PDU as a PMT pair of (metadata, data). The metadata
+describes the samples found in the data portion of the
+pair. Specifically, the metadata can contain the length of the data
+segment and any other information (sample rate, etc.). The PMT vectors
+know their own length, so the length value is not actually necessary
+unless useful for purposes down the line. The metadata is a PMT
+dictionary while the data segment is a PMT uniform vector of either
+bytes, floats, or complex values.
+
+In the end, when a PDU message is ready, the block calls its
+gr_tagged_stream_to_pdu::send_message function that is shown below.
+
+\code
+void
+gr_tagged_stream_to_pdu::send_meassage()
+{
+ if(pmt::pmt_length(d_pdu_vector) != d_pdu_length) {
+ throw std::runtime_error("msg length not correct");
+ }
+
+ pmt::pmt_t msg = pmt::pmt_cons(d_pdu_meta,
+ d_pdu_vector);
+ message_port_pub(pdu_port_id, msg);
+
+ d_pdu_meta = pmt::PMT_NIL;
+ d_pdu_vector = pmt::PMT_NIL;
+ d_pdu_length = 0;
+ d_pdu_remain = 0;
+ d_inpdu = false;
+}
+\endcode
+
+This function does a bit of checking to make sure the PDU is ok as
+well as some cleanup in the end. But it is the line where the message
+is published that is important to this discussion. Here, the block
+posts the PDU message to any subscribers by calling
+gr_basic_block::message_port_pub publishing method.
+
+There is similarly a gr_pdu_to_tagged_stream block that essentially
+does the opposite. It acts as a source to a flowgraph and waits for
+PDU messages to be posted to it on its input port \a pdus. It extracts
+the metadata and data and processes them. The metadata dictionary is
+split up into key:value pairs and stream tags are created out of
+them. The data is then converted into an output stream of items and
+passed along. The next section describes how PDUs can be passed into a
+flowgraph using the gr_pdu_to_tagged_stream block.
+
+\section posting Posting from External Sources
+
+The last feature of the message passing architecture to discuss here
+is how it can be used to take in messages from an external source. We
+can call a block's gr_basic_block::_post method directly and pass it a
+message. So any block with an input message port can receive messages
+from the outside in this way.
+
+The following example uses a gr_pdu_to_tagged_stream block
+as the source block to a flowgraph. Its purpose is to wait for
+messages as PDUs posted to it and convert them to a normal stream. The
+payload will be sent on as a normal stream while the meta data will be
+decoded into tags and sent on the tagged stream.
+
+So if we have created a \b src block as a PDU to stream, it has a \a
+pdus input port, which is how we will inject PDU messages to the
+flowgraph. These PDUs could come from another block or flowgraph, but
+here, we will create and insert them by hand.
+
+\code
+ port = pmt.pmt_intern("pdus")
+ msg = pmt.pmt_cons(pmt.PMT_NIL,
+ pmt.pmt_make_u8vector(16, 0xFF))
+ src.to_basic_block()._post(port, msg)
+\endcode
+
+The PDU's metadata section is empty, hence the pmt::PMT_NIL
+object. The payload is now just a simple vector of 16 bytes of all
+1's. To post the message, we have to access the block's gr_basic_block
+class, which we do using the gr_basic_block::to_basic_block method and
+then call the gr_basic_block::_post method to pass the PDU to the
+right port.
+
+All of these mechanisms are explored and tested in the QA code of the
+file qa_pdu.py.
+
+There are some examples of using the message passing infrastructure
+through GRC in gnuradio-core/src/examples/msg_passing.
+
+*/
diff --git a/docs/doxygen/other/pmt.dox b/docs/doxygen/other/pmt.dox
new file mode 100644
index 0000000000..61b73bca13
--- /dev/null
+++ b/docs/doxygen/other/pmt.dox
@@ -0,0 +1,348 @@
+/*! \page page_pmt Polymorphic Types
+
+\section intro Introduction
+
+Polymorphic Types are opaque data types that are designed as generic
+containers of data that can be safely passed around between blocks and
+threads in GNU Radio. They are heavily used in the stream tags and
+message passing interfaces. The most complete list of PMT function is,
+of course, the source code, specifically the header file pmt.h. This
+manual page summarizes the most important features and points of PMTs.
+
+
+\section datatype PMT Data Type
+
+All PMTs are of the type pmt::pmt_t. This is an opaque container and
+PMT functions must be used to manipulate and even do things like
+compare PMTs. PMTs are also \a immutable (except PMT vectors). We
+never change the data in a PMT; instead, we create a new PMT with the
+new data. The main reason for this is thread safety. We can pass PMTs
+as tags and messages between blocks and each receives its own copy
+that we can read from. However, we can never write to this object, and
+so if multiple blocks have a reference to the same PMT, there is no
+possibility of thread-safety issues of one reading the PMT data while
+another is writing the data. If a block is trying to write new data to
+a PMT, it actually creates a new PMT to put the data into. Thus we
+allow easy access to data in the PMT format without worrying about
+mutex locking and unlocking while manipulating them.
+
+PMTs can represent the following:
+
+- Boolean values of true/false
+- Strings (as symbols)
+- Integers (long and uint64)
+- Floats (as doubles)
+- Complex (as two doubles)
+- Pairs
+- Tuples
+- Vectors (of PMTs)
+- Uniform vectors (of any standard data type)
+- Dictionaries (list of key:value pairs)
+- Any (contains a boost::any pointer to hold anything)
+
+The PMT library also defines a set of functions that operate directly
+on PMTs such as:
+
+- Equal/equivalence between PMTs
+- Length (of a tuple or vector)
+- Map (apply a function to all elements in the PMT)
+- Reverse
+- Get a PMT at a position in a list
+- Serialize and deserialize
+- Printing
+
+The constants in the PMT library are:
+
+- pmt::PMT_T - a PMT True
+- pmt::PMT_F - a PMT False
+- pmt::PMT_NIL - an empty PMT (think Python's 'None')
+
+\section insert Inserting and Extracting Data
+
+Use pmt.h for a complete guide to the list of functions used to create
+PMTs and get the data from a PMT. When using these functions, remember
+that while PMTs are opaque and designed to hold any data, the data
+underneath is still a C++ typed object, and so the right type of
+set/get function must be used for the data type.
+
+Typically, a PMT object can be made from a scalar item using a call
+like "pmt::pmt_from_<type>". Similarly, when getting data out of a
+PMT, we use a call like "pmt::pmt_to_<type>". For example:
+
+\code
+double a = 1.2345;
+pmt::pmt_t pmt_a = pmt::pmt_from_double(a);
+double b = pmt::pmt_to_double(pmt_a);
+
+int c = 12345;
+pmt::pmt_t pmt_c = pmt::pmt_from_long(c);
+int d = pmt::pmt_to_long(pmt_c);
+\endcode
+
+As a side-note, making a PMT from a complex number is not obvious:
+
+\code
+std::complex<double> a(1.2, 3.4);
+pmt::pmt_t pmt_a = pmt::pmt_make_rectangular(a.real(), b.imag());
+std::complex<double> b = pmt::pmt_to_complex(pmt_a);
+\endcode
+
+Pairs, dictionaries, and vectors have different constructors and ways
+to manipulate them, and these are explained in their own sections.
+
+
+\section strings Strings
+
+PMTs have a way of representing short strings. These strings are
+actually stored as interned symbols in a hash table, so in other
+words, only one PMT object for a given string exists. If creating a
+new symbol from a string, if that string already exists in the hash
+table, the constructor will return a reference to the existing PMT.
+
+We create strings with the following functions, where the second
+function, pmt::pmt_intern, is simply an alias of the first.
+
+\code
+pmt::pmt_t str0 = pmt::pmt_string_to_symbol(std::string("some string"));
+pmt::pmt_t str1 = pmt::pmt_intern(std::string("some string"));
+\endcode
+
+The string can be retrieved using the inverse function:
+
+\code
+std::string s = pmt::pmt_symbol_to_string(str0);
+\endcode
+
+
+\section tests Tests and Comparisons
+
+The PMT library comes with a number of functions to test and compare
+PMT objects. In general, for any PMT data type, there is an equivalent
+"pmt::pmt_is_<type>". We can use these to test the PMT before trying
+to access the data inside. Expanding our examples above, we have:
+
+\code
+pmt::pmt_t str0 = pmt::pmt_string_to_symbol(std::string("some string"));
+if(pmt::pmt_is_symbol(str0))
+ std::string s = pmt::pmt_symbol_to_string(str0);
+
+double a = 1.2345;
+pmt::pmt_t pmt_a = pmt::pmt_from_double(a);
+if(pmt::pmt_is_double(pmt_a))
+ double b = pmt::pmt_to_double(pmt_a);
+
+int c = 12345;
+pmt::pmt_t pmt_c = pmt::pmt_from_long(c);
+if(pmt::pmt_is_long(pmt_a))
+ int d = pmt::pmt_to_long(pmt_c);
+
+\\ This will fail the test. Otherwise, trying to coerce \b pmt_c as a
+\\ double when internally it is a long will result in an exception.
+if(pmt::pmt_is_double(pmt_a))
+ double d = pmt::pmt_to_double(pmt_c);
+
+\endcode
+
+
+\section dict Dictionaries
+
+PMT dictionaries and lists of key:value pairs. They have a
+well-defined interface for creating, adding, removing, and accessing
+items in the dictionary. Note that every operation that changes the
+dictionary both takes a PMT dictionary as an argument and returns a
+PMT dictionary. The dictionary used as an input is not changed and the
+returned dictionary is a new PMT with the changes made there.
+
+The following is a list of PMT dictionary functions. Click through to
+get more information on what each does.
+
+- bool pmt::pmt_is_dict(const pmt_t &obj)
+- pmt_t pmt::pmt_make_dict()
+- pmt_t pmt::pmt_dict_add(const pmt_t &dict, const pmt_t &key, const pmt_t &value)
+- pmt_t pmt::pmt_dict_delete(const pmt_t &dict, const pmt_t &key)
+- bool pmt::pmt_dict_has_key(const pmt_t &dict, const pmt_t &key)
+- pmt_t pmt::pmt_dict_ref(const pmt_t &dict, const pmt_t &key, const pmt_t &not_found)
+- pmt_t pmt::pmt_dict_items(pmt_t dict)
+- pmt_t pmt::pmt_dict_keys(pmt_t dict)
+- pmt_t pmt::pmt_dict_values(pmt_t dict)
+
+This example does some basic manipulations of PMT dictionaries in
+Python. Notice that we pass the dictionary \a a and return the results
+to \a a. This still creates a new dictionary and removes the local
+reference to the old dictionary. This just keeps our number of
+variables small.
+
+\code
+from gruel import pmt
+
+key0 = pmt.pmt_intern("int")
+val0 = pmt.pmt_from_long(123)
+val1 = pmt.pmt_from_long(234)
+
+key1 = pmt.pmt_intern("double")
+val2 = pmt.pmt_from_double(5.4321)
+
+# Make an empty dictionary
+a = pmt.pmt_make_dict()
+
+# Add a key:value pair to the dictionary
+a = pmt.pmt_dict_add(a, key0, val0)
+pmt.pmt_print(a)
+
+# Add a new value to the same key;
+# new dict will still have one item with new value
+a = pmt.pmt_dict_add(a, key0, val1)
+pmt.pmt_print(a)
+
+# Add a new key:value pair
+a = pmt.pmt_dict_add(a, key1, val2)
+pmt.pmt_print(a)
+
+# Test if we have a key, then delete it
+print pmt.pmt_dict_has_key(a, key1)
+a = pmt.pmt_dict_delete(a, key1)
+print pmt.pmt_dict_has_key(a, key1)
+
+ref = pmt.pmt_dict_ref(a, key0, pmt.PMT_NIL)
+pmt.pmt_print(ref)
+
+# The following should never print
+if(pmt.pmt_dict_has_key(a, key0) and pmt.pmt_eq(ref, pmt.PMT_NIL)):
+ print "Trouble! We have key0, but it returned PMT_NIL"
+\endcode
+
+\section vectors Vectors
+
+PMT vectors come in two forms: vectors of PMTs and vectors of uniform
+data. The standard PMT vector is a vector of PMTs, and each PMT can be
+of any internal type. On the other hand, uniform PMTs are of a
+specific data type which come in the form:
+
+- (u)int8
+- (u)int16
+- (u)int32
+- (u)int64
+- float32
+- float64
+- complex 32 (std::complex<float>)
+- complex 64 (std::complex<double>)
+
+That is, the standard sizes of integers, floats, and complex types of
+both signed and unsigned.
+
+Vectors have a well-defined interface that allows us to make, set,
+get, and fill them. We can also get the length of a vector with
+pmt::pmt_length.
+
+For standard vectors, these functions look like:
+
+- bool pmt::pmt_is_vector(pmt_t x)
+- pmt_t pmt::pmt_make_vector(size_t k, pmt_t fill)
+- pmt_t pmt::pmt_vector_ref(pmt_t vector, size_t k)
+- void pmt::pmt_vector_set(pmt_t vector, size_t k, pmt_t obj)
+- void pmt::pmt_vector_fill(pmt_t vector, pmt_t fill)
+
+Uniform vectors have the same types of functions, but they are data
+type-dependent. The following list tries to explain them where you
+substitute the specific data type prefix for \a dtype (prefixes being:
+u8, u16, u32, u64, s8, s16, s32, s64, f32, f64, c32, c64).
+
+- bool pmt::pmt_is_(dtype)vector(pmt_t x)
+- pmt_t pmt::pmt_make_(dtype)vector(size_t k, (dtype) fill)
+- pmt_t pmt::pmt_init_(dtype)vector(size_t k, const (dtype*) data)
+- pmt_t pmt::pmt_init_(dtype)vector(size_t k, const std::vector<dtype> data)
+- pmt_t pmt::pmt_(dtype)vector_ref(pmt_t vector, size_t k)
+- void pmt::pmt_(dtype)vector_set(pmt_t vector, size_t k, (dtype) x)
+- const dtype* pmt::pmt_(dtype)vector_elements(pmt_t vector, size_t &len)
+- dtype* pmt::pmt_(dtype)vector_writable_elements(pmt_t vector, size_t &len)
+
+\b Note: We break the contract with vectors. The 'set' functions
+actually change the data underneath. It is important to keep track of
+the implications of setting a new value as well as accessing the
+'vector_writable_elements' data. Since these are mostly standard data
+types, sets and gets are atomic, so it is unlikely to cause a great
+deal of harm. But it's only unlikely, not impossible. Best to use
+mutexes whenever manipulating data in a vector.
+
+
+\subsection blob BLOB
+
+A BLOB is a 'binary large object' type. In PMT's, this is actually
+just a thin wrapper around a u8vector.
+
+\section pairs Pairs
+
+Pairs are inspired by LISP 'cons' data types, so you will find the
+language here comes from LISP. A pair is just a pair of PMT
+objects. They are manipulated using the following functions:
+
+- bool pmt::pmt_is_pair (const pmt_t &obj): Return true if obj is a pair, else false
+- pmt_t pmt::pmt_cons(const pmt_t &x, const pmt_t &y): construct new pair
+- pmt_t pmt::pmt_car(const pmt_t &pair): get the car of the pair (first object)
+- pmt_t pmt::pmt_cdr(const pmt_t &pair): get the cdr of the pair (second object)
+- void pmt::pmt_set_car(pmt_t pair, pmt_t value): Stores value in the car field
+- void pmt::pmt_set_cdr(pmt_t pair, pmt_t value): Stores value in the cdr field
+
+
+\section serdes Serializing and Deserializing
+
+It is often important to hide the fact that we are working with PMTs
+to make them easier to transmit, store, write to file, etc. The PMT
+library has methods to serialize data into a string buffer or a
+string and then methods to deserialize the string buffer or string
+back into a PMT. We use this extensively in the metadata files (see
+\ref page_metadata).
+
+- bool pmt::pmt_serialize(pmt_t obj, std::streambuf &sink)
+- std::string pmt::pmt_serialize_str(pmt_t obj)
+- pmt_t pmt::pmt_deserialize(std::streambuf &source)
+- pmt_t pmt::pmt_deserialize_str(std::string str)
+
+For example, we will serialize the data above to make it into a string
+ready to be written to a file and then deserialize it back to its
+original PMT.
+
+\code
+from gruel import pmt
+
+key0 = pmt.pmt_intern("int")
+val0 = pmt.pmt_from_long(123)
+
+key1 = pmt.pmt_intern("double")
+val1 = pmt.pmt_from_double(5.4321)
+
+# Make an empty dictionary
+a = pmt.pmt_make_dict()
+
+# Add a key:value pair to the dictionary
+a = pmt.pmt_dict_add(a, key0, val0)
+a = pmt.pmt_dict_add(a, key1, val1)
+
+pmt.pmt_print(a)
+
+ser_str = pmt.pmt_serialize_str(a)
+print ser_str
+
+b = pmt.pmt_deserialize_str(ser_str)
+pmt.pmt_print(b)
+
+\endcode
+
+The line where we 'print ser_str' will print and parts will be
+readable, but the point of serializing is not to make a human-readable
+string. This is only done here as a test.
+
+
+\section printing Printing
+
+We have used the pmt::pmt_print function in these examples to nicely
+print the contents of a PMT. Another way to print the contents is
+using the overloaded "<<" operator with a stream buffer object. In
+C++, we can inline print the contents of a PMT like:
+
+\code
+pmt::pmt_t a pmt::pmt_from_double(1.0);
+std::cout << "The PMT a contains " << a << std::endl;
+\endcode
+
+*/