GNU Radio Manual and C++ API Reference  3.10.9.1
The Free & Open Software Radio Ecosystem
pfb_clock_sync_fff.h
Go to the documentation of this file.
1 /* -*- c++ -*- */
2 /*
3  * Copyright 2009,2010,2012 Free Software Foundation, Inc.
4  *
5  * This file is part of GNU Radio
6  *
7  * SPDX-License-Identifier: GPL-3.0-or-later
8  *
9  */
10 
11 #ifndef INCLUDED_DIGITAL_PFB_CLOCK_SYNC_FFF_H
12 #define INCLUDED_DIGITAL_PFB_CLOCK_SYNC_FFF_H
13 
14 #include <gnuradio/block.h>
15 #include <gnuradio/digital/api.h>
17 
18 namespace gr {
19 namespace digital {
20 
21 /*!
22  * \brief Timing synchronizer using polyphase filterbanks
23  * \ingroup synchronizers_blk
24  *
25  * \details
26  * This block performs timing synchronization for PAM signals by
27  * minimizing the derivative of the filtered signal, which in turn
28  * maximizes the SNR and minimizes ISI.
29  *
30  * This approach works by setting up two filterbanks; one
31  * filterbank contains the signal's pulse shaping matched filter
32  * (such as a root raised cosine filter), where each branch of the
33  * filterbank contains a different phase of the filter. The
34  * second filterbank contains the derivatives of the filters in
35  * the first filterbank. Thinking of this in the time domain, the
36  * first filterbank contains filters that have a sinc shape to
37  * them. We want to align the output signal to be sampled at
38  * exactly the peak of the sinc shape. The derivative of the sinc
39  * contains a zero at the maximum point of the sinc (sinc(0) = 1,
40  * sinc(0)' = 0). Furthermore, the region around the zero point
41  * is relatively linear. We make use of this fact to generate the
42  * error signal.
43  *
44  * If the signal out of the derivative filters is d_i[n] for the
45  * ith filter, and the output of the matched filter is x_i[n], we
46  * calculate the error as: e[n] = (Re{x_i[n]} * Re{d_i[n]} +
47  * Im{x_i[n]} * Im{d_i[n]}) / 2.0 This equation averages the error
48  * in the real and imaginary parts. There are two reasons we
49  * multiply by the signal itself. First, if the symbol could be
50  * positive or negative going, but we want the error term to
51  * always tell us to go in the same direction depending on which
52  * side of the zero point we are on. The sign of x_i[n] adjusts
53  * the error term to do this. Second, the magnitude of x_i[n]
54  * scales the error term depending on the symbol's amplitude, so
55  * larger signals give us a stronger error term because we have
56  * more confidence in that symbol's value. Using the magnitude of
57  * x_i[n] instead of just the sign is especially good for signals
58  * with low SNR.
59  *
60  * The error signal, e[n], gives us a value proportional to how
61  * far away from the zero point we are in the derivative
62  * signal. We want to drive this value to zero, so we set up a
63  * second order loop. We have two variables for this loop; d_k is
64  * the filter number in the filterbank we are on and d_rate is the
65  * rate which we travel through the filters in the steady
66  * state. That is, due to the natural clock differences between
67  * the transmitter and receiver, d_rate represents that difference
68  * and would traverse the filter phase paths to keep the receiver
69  * locked. Thinking of this as a second-order PLL, the d_rate is
70  * the frequency and d_k is the phase. So we update d_rate and d_k
71  * using the standard loop equations based on two error signals,
72  * d_alpha and d_beta. We have these two values set based on each
73  * other for a critically damped system, so in the block
74  * constructor, we just ask for "gain," which is d_alpha while
75  * d_beta is equal to (gain^2)/4.
76  *
77  * The block's parameters are:
78  *
79  * \li \p sps: The clock sync block needs to know the number of
80  * samples per symbol, because it defaults to return a single
81  * point representing the symbol. The sps can be any positive real
82  * number and does not need to be an integer.
83  *
84  * \li \p loop_bw: The loop bandwidth is used to set the gain of
85  * the inner control loop (see:
86  * http://gnuradio.squarespace.com/blog/2011/8/13/control-loop-gain-values.html).
87  * This should be set small (a value of around 2pi/100 is
88  * suggested in that blog post as the step size for the number of
89  * radians around the unit circle to move relative to the error).
90  *
91  * \li \p taps: One of the most important parameters for this
92  * block is the taps of the filter. One of the benefits of this
93  * algorithm is that you can put the matched filter in here as the
94  * taps, so you get both the matched filter and sample timing
95  * correction in one go. So create your normal matched filter. For
96  * a typical digital modulation, this is a root raised cosine
97  * filter. The number of taps of this filter is based on how long
98  * you expect the channel to be; that is, how many symbols do you
99  * want to combine to get the current symbols energy back (there's
100  * probably a better way of stating that). It's usually 5 to 10 or
101  * so. That gives you your filter, but now we need to think about
102  * it as a filter with different phase profiles in each filter. So
103  * take this number of taps and multiply it by the number of
104  * filters. This is the number you would use to create your
105  * prototype filter. When you use this in the PFB filerbank, it
106  * segments these taps into the filterbanks in such a way that
107  * each bank now represents the filter at different phases,
108  * equally spaced at 2pi/N, where N is the number of filters.
109  *
110  * \li \p filter_size (default=32): The number of filters can also
111  * be set and defaults to 32. With 32 filters, you get a good
112  * enough resolution in the phase to produce very small, almost
113  * unnoticeable, ISI. Going to 64 filters can reduce this more,
114  * but after that there is very little gained for the extra
115  * complexity.
116  *
117  * \li \p init_phase (default=0): The initial phase is another
118  * settable parameter and refers to the filter path the algorithm
119  * initially looks at (i.e., d_k starts at init_phase). This value
120  * defaults to zero, but it might be useful to start at a
121  * different phase offset, such as the mid-point of the filters.
122  *
123  * \li \p max_rate_deviation (default=1.5): The next parameter is
124  * the max_rate_devitation, which defaults to 1.5. This is how far
125  * we allow d_rate to swing, positive or negative, from
126  * 0. Constraining the rate can help keep the algorithm from
127  * walking too far away to lock during times when there is no
128  * signal.
129  *
130  * \li \p osps (default=1): The osps is the number of output
131  * samples per symbol. By default, the algorithm produces 1 sample
132  * per symbol, sampled at the exact sample value. This osps value
133  * was added to better work with equalizers, which do a better job
134  * of modeling the channel if they have 2 samps/sym.
135  *
136  * Reference:
137  * f. j. harris and M. Rice, "Multirate Digital Filters for Symbol
138  * Timing Synchronization in Software Defined Radios", IEEE
139  * Selected Areas in Communications, Vol. 19, No. 12, Dec., 2001.
140  *
141  * http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.127.1757
142  */
143 class DIGITAL_API pfb_clock_sync_fff : virtual public block
144 {
145 public:
146  // gr::digital::pfb_clock_sync_fff::sptr
147  typedef std::shared_ptr<pfb_clock_sync_fff> sptr;
148 
149  /*!
150  * Build the polyphase filterbank timing synchronizer.
151  * \param sps (double) The number of samples per second in the incoming signal
152  * \param gain (float) The alpha gain of the control loop; beta = (gain^2)/4 by
153  * default. \param taps (vector<int>) The filter taps. \param filter_size (uint) The
154  * number of filters in the filterbank (default = 32). \param init_phase (float) The
155  * initial phase to look at, or which filter to start with (default = 0). \param
156  * max_rate_deviation (float) Distance from 0 d_rate can get (default = 1.5). \param
157  * osps (int) The number of output samples per symbol (default=1).
158  *
159  */
160  static sptr make(double sps,
161  float gain,
162  const std::vector<float>& taps,
163  unsigned int filter_size = 32,
164  float init_phase = 0,
165  float max_rate_deviation = 1.5,
166  int osps = 1);
167 
168  /*! \brief update the system gains from omega and eta
169  *
170  * This function updates the system gains based on the loop
171  * bandwidth and damping factor of the system.
172  * These two factors can be set separately through their own
173  * set functions.
174  */
175  virtual void update_gains() = 0;
176 
177  /*!
178  * Resets the filterbank's filter taps with the new prototype filter.
179  */
180  virtual void update_taps(const std::vector<float>& taps) = 0;
181 
182  /*!
183  * Returns all of the taps of the matched filter
184  */
185  virtual std::vector<std::vector<float>> taps() const = 0;
186 
187  /*!
188  * Returns all of the taps of the derivative filter
189  */
190  virtual std::vector<std::vector<float>> diff_taps() const = 0;
191 
192  /*!
193  * Returns the taps of the matched filter for a particular channel
194  */
195  virtual std::vector<float> channel_taps(int channel) const = 0;
196 
197  /*!
198  * Returns the taps in the derivative filter for a particular channel
199  */
200  virtual std::vector<float> diff_channel_taps(int channel) const = 0;
201 
202  /*!
203  * Return the taps as a formatted string for printing
204  */
205  virtual std::string taps_as_string() const = 0;
206 
207  /*!
208  * Return the derivative filter taps as a formatted string for printing
209  */
210  virtual std::string diff_taps_as_string() const = 0;
211 
212 
213  /*******************************************************************
214  SET FUNCTIONS
215  *******************************************************************/
216 
217 
218  /*!
219  * \brief Set the loop bandwidth
220  *
221  * Set the loop filter's bandwidth to \p bw. This should be
222  * between 2*pi/200 and 2*pi/100 (in rads/samp). It must also be
223  * a positive number.
224  *
225  * When a new damping factor is set, the gains, alpha and beta,
226  * of the loop are recalculated by a call to update_gains().
227  *
228  * \param bw (float) new bandwidth
229  */
230  virtual void set_loop_bandwidth(float bw) = 0;
231 
232  /*!
233  * \brief Set the loop damping factor
234  *
235  * Set the loop filter's damping factor to \p df. The damping
236  * factor should be sqrt(2)/2.0 for critically damped systems.
237  * Set it to anything else only if you know what you are
238  * doing. It must be a number between 0 and 1.
239  *
240  * When a new damping factor is set, the gains, alpha and beta,
241  * of the loop are recalculated by a call to update_gains().
242  *
243  * \param df (float) new damping factor
244  */
245  virtual void set_damping_factor(float df) = 0;
246 
247  /*!
248  * \brief Set the loop gain alpha
249  *
250  * Set's the loop filter's alpha gain parameter.
251  *
252  * This value should really only be set by adjusting the loop
253  * bandwidth and damping factor.
254  *
255  * \param alpha (float) new alpha gain
256  */
257  virtual void set_alpha(float alpha) = 0;
258 
259  /*!
260  * \brief Set the loop gain beta
261  *
262  * Set's the loop filter's beta gain parameter.
263  *
264  * This value should really only be set by adjusting the loop
265  * bandwidth and damping factor.
266  *
267  * \param beta (float) new beta gain
268  */
269  virtual void set_beta(float beta) = 0;
270 
271  /*!
272  * Set the maximum deviation from 0 d_rate can have
273  */
274  virtual void set_max_rate_deviation(float m) = 0;
275 
276  /*******************************************************************
277  GET FUNCTIONS
278  *******************************************************************/
279 
280  /*!
281  * \brief Returns the loop bandwidth
282  */
283  virtual float loop_bandwidth() const = 0;
284 
285  /*!
286  * \brief Returns the loop damping factor
287  */
288  virtual float damping_factor() const = 0;
289 
290  /*!
291  * \brief Returns the loop gain alpha
292  */
293  virtual float alpha() const = 0;
294 
295  /*!
296  * \brief Returns the loop gain beta
297  */
298  virtual float beta() const = 0;
299 
300  /*!
301  * \brief Returns the current clock rate
302  */
303  virtual float clock_rate() const = 0;
304 };
305 
306 } /* namespace digital */
307 } /* namespace gr */
308 
309 #endif /* INCLUDED_DIGITAL_PFB_CLOCK_SYNC_FFF_H */
The abstract base class for all 'terminal' processing blocks.
Definition: gnuradio-runtime/include/gnuradio/block.h:63
Timing synchronizer using polyphase filterbanks.
Definition: pfb_clock_sync_fff.h:144
virtual std::string taps_as_string() const =0
virtual void set_beta(float beta)=0
Set the loop gain beta.
virtual void set_max_rate_deviation(float m)=0
virtual std::vector< float > channel_taps(int channel) const =0
virtual void set_damping_factor(float df)=0
Set the loop damping factor.
virtual void update_taps(const std::vector< float > &taps)=0
virtual void set_loop_bandwidth(float bw)=0
Set the loop bandwidth.
virtual std::vector< std::vector< float > > diff_taps() const =0
std::shared_ptr< pfb_clock_sync_fff > sptr
Definition: pfb_clock_sync_fff.h:147
virtual void set_alpha(float alpha)=0
Set the loop gain alpha.
virtual std::string diff_taps_as_string() const =0
virtual float loop_bandwidth() const =0
Returns the loop bandwidth.
static sptr make(double sps, float gain, const std::vector< float > &taps, unsigned int filter_size=32, float init_phase=0, float max_rate_deviation=1.5, int osps=1)
virtual float beta() const =0
Returns the loop gain beta.
virtual float clock_rate() const =0
Returns the current clock rate.
virtual std::vector< std::vector< float > > taps() const =0
virtual std::vector< float > diff_channel_taps(int channel) const =0
virtual float alpha() const =0
Returns the loop gain alpha.
virtual void update_gains()=0
update the system gains from omega and eta
virtual float damping_factor() const =0
Returns the loop damping factor.
#define DIGITAL_API
Definition: gr-digital/include/gnuradio/digital/api.h:18
static constexpr float taps[NSTEPS+1][NTAPS]
Definition: interpolator_taps.h:9
GNU Radio logging wrapper.
Definition: basic_block.h:29