GNU Radio Manual and C++ API Reference  3.10.9.1
The Free & Open Software Radio Ecosystem
linear_equalizer.h
Go to the documentation of this file.
1 /* -*- c++ -*- */
2 /*
3  * Copyright 2020 Free Software Foundation, Inc.
4  *
5  * This file is part of GNU Radio
6  *
7  * SPDX-License-Identifier: GPL-3.0-or-later
8  *
9  */
10 
11 #ifndef INCLUDED_DIGITAL_LINEAR_EQUALIZER_H
12 #define INCLUDED_DIGITAL_LINEAR_EQUALIZER_H
13 
15 #include <gnuradio/digital/api.h>
18 
19 #include <string>
20 #include <vector>
21 
22 namespace gr {
23 namespace digital {
24 
25 /*!
26  * \brief Linear Equalizer block provides linear equalization using a specified adaptive
27  * algorithm \ingroup equalizers
28  *
29  */
31 {
32 
33 public:
34  typedef std::shared_ptr<linear_equalizer> sptr;
35 
36  /*!
37  * \brief Return a shared_ptr to a new instance of
38  * gr::digital::linear_equalizer.
39  *
40  * The Linear Equalizer block equalizes the incoming signal using an FIR filter.
41  * If provided with a training sequence and a training start tag, data aided
42  * equalization will be performed starting with the tagged sample. If training-based
43  * equalization is active and the training sequence ends, then optionally decision
44  * directed equalization will be performed given the adapt_after_training If no
45  * training sequence or no tag is provided, decision directed equalization will be
46  * performed
47  * This equalizer decimates to the symbol rate according to the samples per symbol
48  * param
49  *
50  * \param num_taps Number of taps for the FIR filter
51  * \param sps int - Samples per Symbol
52  * \param alg Adaptive algorithm object
53  * \param training_sequence Sequence of samples that will be used to train the
54  * equalizer. Provide empty vector to default to DD equalizer
55  * \param adapt_after_training bool - set true to continue DD training after training
56  * sequence has been used up
57  * \param training_start_tag string - tag that indicates the start
58  * of the training sequence in the incoming data
59  */
60  static sptr
61  make(unsigned num_taps,
62  unsigned sps,
63  adaptive_algorithm_sptr alg,
64  bool adapt_after_training = true,
65  std::vector<gr_complex> training_sequence = std::vector<gr_complex>(),
66  const std::string& training_start_tag = "");
67 
68  virtual void set_taps(const std::vector<gr_complex>& taps) = 0;
69  virtual std::vector<gr_complex> taps() const = 0;
70 
71  /*!
72  * \brief Public "work" function - equalize a block of input samples
73  * \details Behaves similar to the block's work function, but made public
74  * to be able to be called outside the GNU Radio scheduler on bursty data
75  * \param input_samples Buffer of input samples to equalize
76  * \param output_symbols Buffer of output symbols post equalization
77  * \param num_inputs Number of input samples provided
78  * \param max_num_outputs Size of output_symbols buffer to write into
79  * \param training_start_samples Vector of starting positions of training sequences
80  * within the input_samples buffer
81  * \param history_included Flag to indicate whether history has been provided at
82  * the beginning of the input_samples buffer, as would normally be provided in a
83  * work() call. The work() function of this block sets this to true, but in bursty
84  * operation, this should be set to false
85  * \param taps Optional output vector buffer of tap weights calculated at
86  * each sample of the output
87  * \param state Optional output state of the equalizer for debug {IDLE,
88  * TRAINING, DD}
89  */
90  virtual int equalize(
91  const gr_complex* input_samples,
92  gr_complex* output_symbols,
93  unsigned int num_inputs,
94  unsigned int max_num_outputs,
95  std::vector<unsigned int> training_start_samples = std::vector<unsigned int>(0),
96  bool history_included = false,
97  gr_complex* taps = nullptr,
98  unsigned short* state = nullptr) = 0;
99 };
100 
101 } // namespace digital
102 } // namespace gr
103 
104 #endif /* INCLUDED_DIGITAL_LINEAR_EQUALIZER_H */
Linear Equalizer block provides linear equalization using a specified adaptive algorithm.
Definition: linear_equalizer.h:31
std::shared_ptr< linear_equalizer > sptr
Definition: linear_equalizer.h:34
virtual void set_taps(const std::vector< gr_complex > &taps)=0
virtual int equalize(const gr_complex *input_samples, gr_complex *output_symbols, unsigned int num_inputs, unsigned int max_num_outputs, std::vector< unsigned int > training_start_samples=std::vector< unsigned int >(0), bool history_included=false, gr_complex *taps=nullptr, unsigned short *state=nullptr)=0
Public "work" function - equalize a block of input samples.
static sptr make(unsigned num_taps, unsigned sps, adaptive_algorithm_sptr alg, bool adapt_after_training=true, std::vector< gr_complex > training_sequence=std::vector< gr_complex >(), const std::string &training_start_tag="")
Return a shared_ptr to a new instance of gr::digital::linear_equalizer.
virtual std::vector< gr_complex > taps() const =0
synchronous N:1 input to output with history
Definition: sync_decimator.h:26
#define DIGITAL_API
Definition: gr-digital/include/gnuradio/digital/api.h:18
std::complex< float > gr_complex
Definition: gr_complex.h:15
static constexpr float taps[NSTEPS+1][NTAPS]
Definition: interpolator_taps.h:9
GNU Radio logging wrapper.
Definition: basic_block.h:29