GNU Radio Manual and C++ API Reference  3.8.1.0
The Free & Open Software Radio Ecosystem
iir_filter.h
Go to the documentation of this file.
1 /* -*- c++ -*- */
2 /*
3  * Copyright 2002,2012 Free Software Foundation, Inc.
4  *
5  * This file is part of GNU Radio
6  *
7  * GNU Radio is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 3, or (at your option)
10  * any later version.
11  *
12  * GNU Radio is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15  * GNU General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with GNU Radio; see the file COPYING. If not, write to
19  * the Free Software Foundation, Inc., 51 Franklin Street,
20  * Boston, MA 02110-1301, USA.
21  */
22 
23 #ifndef INCLUDED_IIR_FILTER_H
24 #define INCLUDED_IIR_FILTER_H
25 
26 #include <gnuradio/filter/api.h>
27 #include <gnuradio/gr_complex.h>
28 #include <stdexcept>
29 #include <vector>
30 
31 namespace gr {
32 namespace filter {
33 namespace kernel {
34 
35 /*!
36  * \brief Base class template for Infinite Impulse Response filter (IIR)
37  *
38  * \details
39  *
40  * This class provides a templated kernel for IIR filters. These
41  * iir_filters can be instantiated with a set of feed-forward
42  * and feed-back taps in the constructor. We then call the
43  * iir_filter::filter function to add a new sample to the
44  * filter, or iir_filter::filter_n to add a vector of samples to
45  * be filtered.
46  *
47  * Instantiating a filter means defining the templates for the
48  * data types being processed by the filter. There are four templates:
49  *
50  * \li i_type the data type of the input data (i.e., float).
51  * \li o_type the data type of the output data (i.e., float).
52  * \li tap_type the data type of the filter taps (i.e., double).
53  * \li acc_type the data type of the internal accumulator (i.e., double).
54  *
55  * The acc_type is specified to control how data is handled
56  * internally in the filter. This should always be the highest
57  * precision data type of any of the first three. Often, IIR
58  * filters require double-precision values in the taps for
59  * stability, and so the internal accumulator should also be
60  * double precision.
61  *
62  * Example:
63  *
64  * \code
65  * gr::filter::kernel::iir_filter<float,float,double,double> iir_filt(fftaps, fbtaps);
66  * ...
67  * float y = iir_filt.filter(x);
68  *
69  * <or>
70  *
71  * iir_filt.filter(y, x, N); // y and x are float arrays
72  * \endcode
73  *
74  * Another example for handling complex samples with
75  * double-precision taps (see filter::iir_filter_ccz):
76  *
77  * \code
78  * gr:;filter::kernel::iir_filter<gr_complex, gr_complex, gr_complexd, gr_complexd>
79  * iir_filt(fftaps, fbtaps); \endcode
80  */
81 template <class i_type, class o_type, class tap_type, class acc_type>
83 {
84 public:
85  /*!
86  * \brief Construct an IIR with the given taps.
87  *
88  * This filter uses the Direct Form I implementation, where
89  * \p fftaps contains the feed-forward taps, and \p fbtaps the feedback ones.
90  *
91  * \p oldstyle: The old style of the IIR filter uses feedback
92  * taps that are negative of what most definitions use (scipy
93  * and Matlab among them). This parameter keeps using the old
94  * GNU Radio style and is set to TRUE by default. When taps
95  * generated from scipy, Matlab, or gr_filter_design, use the
96  * new style by setting this to FALSE.
97  *
98  * When \p oldstyle is set FALSE, the input and output satisfy a
99  * difference equation of the form
100 
101  \f[
102  y[n] + \sum_{k=1}^{M} a_k y[n-k] = \sum_{k=0}^{N} b_k x[n-k]
103  \f]
104 
105  * with the corresponding rational system function
106 
107  \f[
108  H(z) = \frac{\sum_{k=0}^{N} b_k z^{-k}}{1 + \sum_{k=1}^{M} a_k z^{-k}}
109  \f]
110  * where:
111  * \f$x\f$ - input signal,
112  * \f$y\f$ - output signal,
113  * \f$a_k\f$ - k-th feedback tap,
114  * \f$b_k\f$ - k-th feed-forward tap,
115  * \f$M\f$ - \p len(fbtaps)-1,
116  * \f$N\f$ - \p len(fftaps)-1.
117 
118  * \f$a_0\f$, that is \p fbtaps[0], is ignored.
119  */
120  iir_filter(const std::vector<tap_type>& fftaps,
121  const std::vector<tap_type>& fbtaps,
122  bool oldstyle = true) noexcept(false)
123  {
124  d_oldstyle = oldstyle;
125  set_taps(fftaps, fbtaps);
126  }
127 
128  iir_filter() : d_latest_n(0), d_latest_m(0) {}
129 
131 
132  /*!
133  * \brief compute a single output value.
134  * \returns the filtered input value.
135  */
136  o_type filter(const i_type input);
137 
138  /*!
139  * \brief compute an array of N output values.
140  * \p input must have N valid entries.
141  */
142  void filter_n(o_type output[], const i_type input[], long n);
143 
144  /*!
145  * \return number of taps in filter.
146  */
147  unsigned ntaps_ff() const { return d_fftaps.size(); }
148  unsigned ntaps_fb() const { return d_fbtaps.size(); }
149 
150  /*!
151  * \brief install new taps.
152  */
153  void set_taps(const std::vector<tap_type>& fftaps,
154  const std::vector<tap_type>& fbtaps)
155  {
156  d_latest_n = 0;
157  d_latest_m = 0;
158  d_fftaps = fftaps;
159 
160  if (d_oldstyle) {
161  d_fbtaps = fbtaps;
162  } else {
163  // New style negates taps a[1:N-1] to fit with most IIR
164  // tap generating programs.
165  d_fbtaps.resize(fbtaps.size());
166  d_fbtaps[0] = fbtaps[0];
167  for (size_t i = 1; i < fbtaps.size(); i++) {
168  d_fbtaps[i] = -fbtaps[i];
169  }
170  }
171 
172  int n = fftaps.size();
173  int m = fbtaps.size();
174  d_prev_input.clear();
175  d_prev_output.clear();
176  d_prev_input.resize(2 * n, 0);
177  d_prev_output.resize(2 * m, 0);
178  }
179 
180 protected:
182  std::vector<tap_type> d_fftaps;
183  std::vector<tap_type> d_fbtaps;
186  std::vector<acc_type> d_prev_output;
187  std::vector<i_type> d_prev_input;
188 };
189 
190 //
191 // general case. We may want to specialize this
192 //
193 template <class i_type, class o_type, class tap_type, class acc_type>
195 {
196  acc_type acc;
197  unsigned i = 0;
198  unsigned n = ntaps_ff();
199  unsigned m = ntaps_fb();
200 
201  if (n == 0)
202  return (o_type)0;
203 
204  int latest_n = d_latest_n;
205  int latest_m = d_latest_m;
206 
207  acc = d_fftaps[0] * input;
208  for (i = 1; i < n; i++)
209  acc += (d_fftaps[i] * d_prev_input[latest_n + i]);
210  for (i = 1; i < m; i++)
211  acc += (d_fbtaps[i] * d_prev_output[latest_m + i]);
212 
213  // store the values twice to avoid having to handle wrap-around in the loop
214  d_prev_output[latest_m] = acc;
215  d_prev_output[latest_m + m] = acc;
216  d_prev_input[latest_n] = input;
217  d_prev_input[latest_n + n] = input;
218 
219  latest_n--;
220  latest_m--;
221  if (latest_n < 0)
222  latest_n += n;
223  if (latest_m < 0)
224  latest_m += m;
225 
226  d_latest_m = latest_m;
227  d_latest_n = latest_n;
228  return (o_type)acc;
229 }
230 
231 template <class i_type, class o_type, class tap_type, class acc_type>
233  const i_type input[],
234  long n)
235 {
236  for (int i = 0; i < n; i++)
237  output[i] = filter(input[i]);
238 }
239 
240 template <>
243 
244 template <>
247 
248 template <>
250  const gr_complex input);
251 
252 } /* namespace kernel */
253 } /* namespace filter */
254 } /* namespace gr */
255 
256 #endif /* INCLUDED_IIR_FILTER_H */
std::vector< i_type > d_prev_input
Definition: iir_filter.h:187
std::vector< tap_type > d_fftaps
Definition: iir_filter.h:182
unsigned ntaps_ff() const
Definition: iir_filter.h:147
o_type filter(const i_type input)
compute a single output value.
Definition: iir_filter.h:194
iir_filter()
Definition: iir_filter.h:128
std::vector< acc_type > d_prev_output
Definition: iir_filter.h:186
Base class template for Infinite Impulse Response filter (IIR)
Definition: iir_filter.h:82
iir_filter(const std::vector< tap_type > &fftaps, const std::vector< tap_type > &fbtaps, bool oldstyle=true) noexcept(false)
Construct an IIR with the given taps.
Definition: iir_filter.h:120
void set_taps(const std::vector< tap_type > &fftaps, const std::vector< tap_type > &fbtaps)
install new taps.
Definition: iir_filter.h:153
std::complex< float > gr_complex
Definition: gr_complex.h:27
GNU Radio logging wrapper for log4cpp library (C++ port of log4j)
Definition: basic_block.h:43
int d_latest_n
Definition: iir_filter.h:184
bool d_oldstyle
Definition: iir_filter.h:181
void filter_n(o_type output[], const i_type input[], long n)
compute an array of N output values. input must have N valid entries.
Definition: iir_filter.h:232
~iir_filter()
Definition: iir_filter.h:130
std::vector< tap_type > d_fbtaps
Definition: iir_filter.h:183
int d_latest_m
Definition: iir_filter.h:185
#define FILTER_API
Definition: gr-filter/include/gnuradio/filter/api.h:30
unsigned ntaps_fb() const
Definition: iir_filter.h:148