GNU Radio 3.6.5 C++ API
|
00001 #ifndef INCLUDED_volk_32fc_x2_dot_prod_32fc_a_H 00002 #define INCLUDED_volk_32fc_x2_dot_prod_32fc_a_H 00003 00004 #include <volk/volk_common.h> 00005 #include <volk/volk_complex.h> 00006 #include <stdio.h> 00007 #include <string.h> 00008 00009 00010 #ifdef LV_HAVE_GENERIC 00011 00012 00013 static inline void volk_32fc_x2_dot_prod_32fc_a_generic(lv_32fc_t* result, const lv_32fc_t* input, const lv_32fc_t* taps, unsigned int num_bytes) { 00014 00015 float * res = (float*) result; 00016 float * in = (float*) input; 00017 float * tp = (float*) taps; 00018 unsigned int n_2_ccomplex_blocks = num_bytes >> 4; 00019 unsigned int isodd = (num_bytes >> 3) &1; 00020 00021 float sum0[2] = {0,0}; 00022 float sum1[2] = {0,0}; 00023 unsigned int i = 0; 00024 00025 for(i = 0; i < n_2_ccomplex_blocks; ++i) { 00026 sum0[0] += in[0] * tp[0] - in[1] * tp[1]; 00027 sum0[1] += in[0] * tp[1] + in[1] * tp[0]; 00028 sum1[0] += in[2] * tp[2] - in[3] * tp[3]; 00029 sum1[1] += in[2] * tp[3] + in[3] * tp[2]; 00030 00031 in += 4; 00032 tp += 4; 00033 } 00034 00035 res[0] = sum0[0] + sum1[0]; 00036 res[1] = sum0[1] + sum1[1]; 00037 00038 for(i = 0; i < isodd; ++i) { 00039 *result += input[(num_bytes >> 3) - 1] * taps[(num_bytes >> 3) - 1]; 00040 } 00041 } 00042 00043 #endif /*LV_HAVE_GENERIC*/ 00044 00045 00046 #if LV_HAVE_SSE && LV_HAVE_64 00047 00048 00049 static inline void volk_32fc_x2_dot_prod_32fc_a_sse_64(lv_32fc_t* result, const lv_32fc_t* input, const lv_32fc_t* taps, unsigned int num_bytes) { 00050 00051 00052 asm 00053 ( 00054 "# ccomplex_dotprod_generic (float* result, const float *input,\n\t" 00055 "# const float *taps, unsigned num_bytes)\n\t" 00056 "# float sum0 = 0;\n\t" 00057 "# float sum1 = 0;\n\t" 00058 "# float sum2 = 0;\n\t" 00059 "# float sum3 = 0;\n\t" 00060 "# do {\n\t" 00061 "# sum0 += input[0] * taps[0] - input[1] * taps[1];\n\t" 00062 "# sum1 += input[0] * taps[1] + input[1] * taps[0];\n\t" 00063 "# sum2 += input[2] * taps[2] - input[3] * taps[3];\n\t" 00064 "# sum3 += input[2] * taps[3] + input[3] * taps[2];\n\t" 00065 "# input += 4;\n\t" 00066 "# taps += 4; \n\t" 00067 "# } while (--n_2_ccomplex_blocks != 0);\n\t" 00068 "# result[0] = sum0 + sum2;\n\t" 00069 "# result[1] = sum1 + sum3;\n\t" 00070 "# TODO: prefetch and better scheduling\n\t" 00071 " xor %%r9, %%r9\n\t" 00072 " xor %%r10, %%r10\n\t" 00073 " movq %%rcx, %%rax\n\t" 00074 " movq %%rcx, %%r8\n\t" 00075 " movq %[rsi], %%r9\n\t" 00076 " movq %[rdx], %%r10\n\t" 00077 " xorps %%xmm6, %%xmm6 # zero accumulators\n\t" 00078 " movaps 0(%%r9), %%xmm0\n\t" 00079 " xorps %%xmm7, %%xmm7 # zero accumulators\n\t" 00080 " movaps 0(%%r10), %%xmm2\n\t" 00081 " shr $5, %%rax # rax = n_2_ccomplex_blocks / 2\n\t" 00082 " shr $4, %%r8\n\t" 00083 " jmp .%=L1_test\n\t" 00084 " # 4 taps / loop\n\t" 00085 " # something like ?? cycles / loop\n\t" 00086 ".%=Loop1: \n\t" 00087 "# complex prod: C += A * B, w/ temp Z & Y (or B), xmmPN=$0x8000000080000000\n\t" 00088 "# movaps (%%r9), %%xmmA\n\t" 00089 "# movaps (%%r10), %%xmmB\n\t" 00090 "# movaps %%xmmA, %%xmmZ\n\t" 00091 "# shufps $0xb1, %%xmmZ, %%xmmZ # swap internals\n\t" 00092 "# mulps %%xmmB, %%xmmA\n\t" 00093 "# mulps %%xmmZ, %%xmmB\n\t" 00094 "# # SSE replacement for: pfpnacc %%xmmB, %%xmmA\n\t" 00095 "# xorps %%xmmPN, %%xmmA\n\t" 00096 "# movaps %%xmmA, %%xmmZ\n\t" 00097 "# unpcklps %%xmmB, %%xmmA\n\t" 00098 "# unpckhps %%xmmB, %%xmmZ\n\t" 00099 "# movaps %%xmmZ, %%xmmY\n\t" 00100 "# shufps $0x44, %%xmmA, %%xmmZ # b01000100\n\t" 00101 "# shufps $0xee, %%xmmY, %%xmmA # b11101110\n\t" 00102 "# addps %%xmmZ, %%xmmA\n\t" 00103 "# addps %%xmmA, %%xmmC\n\t" 00104 "# A=xmm0, B=xmm2, Z=xmm4\n\t" 00105 "# A'=xmm1, B'=xmm3, Z'=xmm5\n\t" 00106 " movaps 16(%%r9), %%xmm1\n\t" 00107 " movaps %%xmm0, %%xmm4\n\t" 00108 " mulps %%xmm2, %%xmm0\n\t" 00109 " shufps $0xb1, %%xmm4, %%xmm4 # swap internals\n\t" 00110 " movaps 16(%%r10), %%xmm3\n\t" 00111 " movaps %%xmm1, %%xmm5\n\t" 00112 " addps %%xmm0, %%xmm6\n\t" 00113 " mulps %%xmm3, %%xmm1\n\t" 00114 " shufps $0xb1, %%xmm5, %%xmm5 # swap internals\n\t" 00115 " addps %%xmm1, %%xmm6\n\t" 00116 " mulps %%xmm4, %%xmm2\n\t" 00117 " movaps 32(%%r9), %%xmm0\n\t" 00118 " addps %%xmm2, %%xmm7\n\t" 00119 " mulps %%xmm5, %%xmm3\n\t" 00120 " add $32, %%r9\n\t" 00121 " movaps 32(%%r10), %%xmm2\n\t" 00122 " addps %%xmm3, %%xmm7\n\t" 00123 " add $32, %%r10\n\t" 00124 ".%=L1_test:\n\t" 00125 " dec %%rax\n\t" 00126 " jge .%=Loop1\n\t" 00127 " # We've handled the bulk of multiplies up to here.\n\t" 00128 " # Let's sse if original n_2_ccomplex_blocks was odd.\n\t" 00129 " # If so, we've got 2 more taps to do.\n\t" 00130 " and $1, %%r8\n\t" 00131 " je .%=Leven\n\t" 00132 " # The count was odd, do 2 more taps.\n\t" 00133 " # Note that we've already got mm0/mm2 preloaded\n\t" 00134 " # from the main loop.\n\t" 00135 " movaps %%xmm0, %%xmm4\n\t" 00136 " mulps %%xmm2, %%xmm0\n\t" 00137 " shufps $0xb1, %%xmm4, %%xmm4 # swap internals\n\t" 00138 " addps %%xmm0, %%xmm6\n\t" 00139 " mulps %%xmm4, %%xmm2\n\t" 00140 " addps %%xmm2, %%xmm7\n\t" 00141 ".%=Leven:\n\t" 00142 " # neg inversor\n\t" 00143 " xorps %%xmm1, %%xmm1\n\t" 00144 " mov $0x80000000, %%r9\n\t" 00145 " movd %%r9, %%xmm1\n\t" 00146 " shufps $0x11, %%xmm1, %%xmm1 # b00010001 # 0 -0 0 -0\n\t" 00147 " # pfpnacc\n\t" 00148 " xorps %%xmm1, %%xmm6\n\t" 00149 " movaps %%xmm6, %%xmm2\n\t" 00150 " unpcklps %%xmm7, %%xmm6\n\t" 00151 " unpckhps %%xmm7, %%xmm2\n\t" 00152 " movaps %%xmm2, %%xmm3\n\t" 00153 " shufps $0x44, %%xmm6, %%xmm2 # b01000100\n\t" 00154 " shufps $0xee, %%xmm3, %%xmm6 # b11101110\n\t" 00155 " addps %%xmm2, %%xmm6\n\t" 00156 " # xmm6 = r1 i2 r3 i4\n\t" 00157 " movhlps %%xmm6, %%xmm4 # xmm4 = r3 i4 ?? ??\n\t" 00158 " addps %%xmm4, %%xmm6 # xmm6 = r1+r3 i2+i4 ?? ??\n\t" 00159 " movlps %%xmm6, (%[rdi]) # store low 2x32 bits (complex) to memory\n\t" 00160 : 00161 :[rsi] "r" (input), [rdx] "r" (taps), "c" (num_bytes), [rdi] "r" (result) 00162 :"rax", "r8", "r9", "r10" 00163 ); 00164 00165 00166 if(((num_bytes >> 3) & 1)) { 00167 *result += (input[(num_bytes >> 3) - 1] * taps[(num_bytes >> 3) - 1]); 00168 } 00169 00170 return; 00171 00172 } 00173 00174 #endif 00175 00176 #if LV_HAVE_SSE && LV_HAVE_32 00177 00178 static inline void volk_32fc_x2_dot_prod_32fc_a_sse_32(lv_32fc_t* result, const lv_32fc_t* input, const lv_32fc_t* taps, unsigned int num_bytes) { 00179 00180 volk_32fc_x2_dot_prod_32fc_a_generic(result, input, taps, num_bytes); 00181 00182 #if 0 00183 asm volatile 00184 ( 00185 " #pushl %%ebp\n\t" 00186 " #movl %%esp, %%ebp\n\t" 00187 " movl 12(%%ebp), %%eax # input\n\t" 00188 " movl 16(%%ebp), %%edx # taps\n\t" 00189 " movl 20(%%ebp), %%ecx # n_bytes\n\t" 00190 " xorps %%xmm6, %%xmm6 # zero accumulators\n\t" 00191 " movaps 0(%%eax), %%xmm0\n\t" 00192 " xorps %%xmm7, %%xmm7 # zero accumulators\n\t" 00193 " movaps 0(%%edx), %%xmm2\n\t" 00194 " shrl $5, %%ecx # ecx = n_2_ccomplex_blocks / 2\n\t" 00195 " jmp .%=L1_test\n\t" 00196 " # 4 taps / loop\n\t" 00197 " # something like ?? cycles / loop\n\t" 00198 ".%=Loop1: \n\t" 00199 "# complex prod: C += A * B, w/ temp Z & Y (or B), xmmPN=$0x8000000080000000\n\t" 00200 "# movaps (%%eax), %%xmmA\n\t" 00201 "# movaps (%%edx), %%xmmB\n\t" 00202 "# movaps %%xmmA, %%xmmZ\n\t" 00203 "# shufps $0xb1, %%xmmZ, %%xmmZ # swap internals\n\t" 00204 "# mulps %%xmmB, %%xmmA\n\t" 00205 "# mulps %%xmmZ, %%xmmB\n\t" 00206 "# # SSE replacement for: pfpnacc %%xmmB, %%xmmA\n\t" 00207 "# xorps %%xmmPN, %%xmmA\n\t" 00208 "# movaps %%xmmA, %%xmmZ\n\t" 00209 "# unpcklps %%xmmB, %%xmmA\n\t" 00210 "# unpckhps %%xmmB, %%xmmZ\n\t" 00211 "# movaps %%xmmZ, %%xmmY\n\t" 00212 "# shufps $0x44, %%xmmA, %%xmmZ # b01000100\n\t" 00213 "# shufps $0xee, %%xmmY, %%xmmA # b11101110\n\t" 00214 "# addps %%xmmZ, %%xmmA\n\t" 00215 "# addps %%xmmA, %%xmmC\n\t" 00216 "# A=xmm0, B=xmm2, Z=xmm4\n\t" 00217 "# A'=xmm1, B'=xmm3, Z'=xmm5\n\t" 00218 " movaps 16(%%eax), %%xmm1\n\t" 00219 " movaps %%xmm0, %%xmm4\n\t" 00220 " mulps %%xmm2, %%xmm0\n\t" 00221 " shufps $0xb1, %%xmm4, %%xmm4 # swap internals\n\t" 00222 " movaps 16(%%edx), %%xmm3\n\t" 00223 " movaps %%xmm1, %%xmm5\n\t" 00224 " addps %%xmm0, %%xmm6\n\t" 00225 " mulps %%xmm3, %%xmm1\n\t" 00226 " shufps $0xb1, %%xmm5, %%xmm5 # swap internals\n\t" 00227 " addps %%xmm1, %%xmm6\n\t" 00228 " mulps %%xmm4, %%xmm2\n\t" 00229 " movaps 32(%%eax), %%xmm0\n\t" 00230 " addps %%xmm2, %%xmm7\n\t" 00231 " mulps %%xmm5, %%xmm3\n\t" 00232 " addl $32, %%eax\n\t" 00233 " movaps 32(%%edx), %%xmm2\n\t" 00234 " addps %%xmm3, %%xmm7\n\t" 00235 " addl $32, %%edx\n\t" 00236 ".%=L1_test:\n\t" 00237 " decl %%ecx\n\t" 00238 " jge .%=Loop1\n\t" 00239 " # We've handled the bulk of multiplies up to here.\n\t" 00240 " # Let's sse if original n_2_ccomplex_blocks was odd.\n\t" 00241 " # If so, we've got 2 more taps to do.\n\t" 00242 " movl 20(%%ebp), %%ecx # n_2_ccomplex_blocks\n\t" 00243 " shrl $4, %%ecx\n\t" 00244 " andl $1, %%ecx\n\t" 00245 " je .%=Leven\n\t" 00246 " # The count was odd, do 2 more taps.\n\t" 00247 " # Note that we've already got mm0/mm2 preloaded\n\t" 00248 " # from the main loop.\n\t" 00249 " movaps %%xmm0, %%xmm4\n\t" 00250 " mulps %%xmm2, %%xmm0\n\t" 00251 " shufps $0xb1, %%xmm4, %%xmm4 # swap internals\n\t" 00252 " addps %%xmm0, %%xmm6\n\t" 00253 " mulps %%xmm4, %%xmm2\n\t" 00254 " addps %%xmm2, %%xmm7\n\t" 00255 ".%=Leven:\n\t" 00256 " # neg inversor\n\t" 00257 " movl 8(%%ebp), %%eax \n\t" 00258 " xorps %%xmm1, %%xmm1\n\t" 00259 " movl $0x80000000, (%%eax)\n\t" 00260 " movss (%%eax), %%xmm1\n\t" 00261 " shufps $0x11, %%xmm1, %%xmm1 # b00010001 # 0 -0 0 -0\n\t" 00262 " # pfpnacc\n\t" 00263 " xorps %%xmm1, %%xmm6\n\t" 00264 " movaps %%xmm6, %%xmm2\n\t" 00265 " unpcklps %%xmm7, %%xmm6\n\t" 00266 " unpckhps %%xmm7, %%xmm2\n\t" 00267 " movaps %%xmm2, %%xmm3\n\t" 00268 " shufps $0x44, %%xmm6, %%xmm2 # b01000100\n\t" 00269 " shufps $0xee, %%xmm3, %%xmm6 # b11101110\n\t" 00270 " addps %%xmm2, %%xmm6\n\t" 00271 " # xmm6 = r1 i2 r3 i4\n\t" 00272 " #movl 8(%%ebp), %%eax # @result\n\t" 00273 " movhlps %%xmm6, %%xmm4 # xmm4 = r3 i4 ?? ??\n\t" 00274 " addps %%xmm4, %%xmm6 # xmm6 = r1+r3 i2+i4 ?? ??\n\t" 00275 " movlps %%xmm6, (%%eax) # store low 2x32 bits (complex) to memory\n\t" 00276 " #popl %%ebp\n\t" 00277 : 00278 : 00279 : "eax", "ecx", "edx" 00280 ); 00281 00282 00283 int getem = num_bytes % 16; 00284 00285 for(; getem > 0; getem -= 8) { 00286 00287 00288 *result += (input[(num_bytes >> 3) - 1] * taps[(num_bytes >> 3) - 1]); 00289 00290 } 00291 00292 return; 00293 #endif 00294 } 00295 00296 #endif /*LV_HAVE_SSE*/ 00297 00298 #ifdef LV_HAVE_SSE3 00299 00300 #include <pmmintrin.h> 00301 00302 static inline void volk_32fc_x2_dot_prod_32fc_a_sse3(lv_32fc_t* result, const lv_32fc_t* input, const lv_32fc_t* taps, unsigned int num_bytes) { 00303 00304 00305 lv_32fc_t dotProduct; 00306 memset(&dotProduct, 0x0, 2*sizeof(float)); 00307 00308 unsigned int number = 0; 00309 const unsigned int halfPoints = num_bytes >> 4; 00310 00311 __m128 x, y, yl, yh, z, tmp1, tmp2, dotProdVal; 00312 00313 const lv_32fc_t* a = input; 00314 const lv_32fc_t* b = taps; 00315 00316 dotProdVal = _mm_setzero_ps(); 00317 00318 for(;number < halfPoints; number++){ 00319 00320 x = _mm_load_ps((float*)a); // Load the ar + ai, br + bi as ar,ai,br,bi 00321 y = _mm_load_ps((float*)b); // Load the cr + ci, dr + di as cr,ci,dr,di 00322 00323 yl = _mm_moveldup_ps(y); // Load yl with cr,cr,dr,dr 00324 yh = _mm_movehdup_ps(y); // Load yh with ci,ci,di,di 00325 00326 tmp1 = _mm_mul_ps(x,yl); // tmp1 = ar*cr,ai*cr,br*dr,bi*dr 00327 00328 x = _mm_shuffle_ps(x,x,0xB1); // Re-arrange x to be ai,ar,bi,br 00329 00330 tmp2 = _mm_mul_ps(x,yh); // tmp2 = ai*ci,ar*ci,bi*di,br*di 00331 00332 z = _mm_addsub_ps(tmp1,tmp2); // ar*cr-ai*ci, ai*cr+ar*ci, br*dr-bi*di, bi*dr+br*di 00333 00334 dotProdVal = _mm_add_ps(dotProdVal, z); // Add the complex multiplication results together 00335 00336 a += 2; 00337 b += 2; 00338 } 00339 00340 __VOLK_ATTR_ALIGNED(16) lv_32fc_t dotProductVector[2]; 00341 00342 _mm_store_ps((float*)dotProductVector,dotProdVal); // Store the results back into the dot product vector 00343 00344 dotProduct += ( dotProductVector[0] + dotProductVector[1] ); 00345 00346 if(((num_bytes >> 3) & 1) != 0) { 00347 dotProduct += (*a) * (*b); 00348 } 00349 00350 *result = dotProduct; 00351 } 00352 00353 #endif /*LV_HAVE_SSE3*/ 00354 00355 #ifdef LV_HAVE_SSE4_1 00356 00357 #include <smmintrin.h> 00358 00359 static inline void volk_32fc_x2_dot_prod_32fc_a_sse4_1(lv_32fc_t* result, const lv_32fc_t* input, const lv_32fc_t* taps, unsigned int num_bytes) { 00360 00361 __m128 xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7, real0, real1, im0, im1; 00362 float *p_input, *p_taps; 00363 __m64 *p_result; 00364 00365 p_result = (__m64*)result; 00366 p_input = (float*)input; 00367 p_taps = (float*)taps; 00368 00369 static const __m128i neg = {0x000000000000000080000000}; 00370 00371 int i = 0; 00372 00373 int bound = (num_bytes >> 5); 00374 int leftovers = (num_bytes & 24) >> 3; 00375 00376 real0 = _mm_sub_ps(real0, real0); 00377 real1 = _mm_sub_ps(real1, real1); 00378 im0 = _mm_sub_ps(im0, im0); 00379 im1 = _mm_sub_ps(im1, im1); 00380 00381 for(; i < bound; ++i) { 00382 00383 00384 xmm0 = _mm_load_ps(p_input); 00385 xmm1 = _mm_load_ps(p_taps); 00386 00387 p_input += 4; 00388 p_taps += 4; 00389 00390 xmm2 = _mm_load_ps(p_input); 00391 xmm3 = _mm_load_ps(p_taps); 00392 00393 p_input += 4; 00394 p_taps += 4; 00395 00396 xmm4 = _mm_unpackhi_ps(xmm0, xmm2); 00397 xmm5 = _mm_unpackhi_ps(xmm1, xmm3); 00398 xmm0 = _mm_unpacklo_ps(xmm0, xmm2); 00399 xmm2 = _mm_unpacklo_ps(xmm1, xmm3); 00400 00401 //imaginary vector from input 00402 xmm1 = _mm_unpackhi_ps(xmm0, xmm4); 00403 //real vector from input 00404 xmm3 = _mm_unpacklo_ps(xmm0, xmm4); 00405 //imaginary vector from taps 00406 xmm0 = _mm_unpackhi_ps(xmm2, xmm5); 00407 //real vector from taps 00408 xmm2 = _mm_unpacklo_ps(xmm2, xmm5); 00409 00410 xmm4 = _mm_dp_ps(xmm3, xmm2, 0xf1); 00411 xmm5 = _mm_dp_ps(xmm1, xmm0, 0xf1); 00412 00413 xmm6 = _mm_dp_ps(xmm3, xmm0, 0xf2); 00414 xmm7 = _mm_dp_ps(xmm1, xmm2, 0xf2); 00415 00416 real0 = _mm_add_ps(xmm4, real0); 00417 real1 = _mm_add_ps(xmm5, real1); 00418 im0 = _mm_add_ps(xmm6, im0); 00419 im1 = _mm_add_ps(xmm7, im1); 00420 00421 } 00422 00423 real1 = _mm_xor_ps(real1, bit128_p(&neg)->float_vec); 00424 00425 im0 = _mm_add_ps(im0, im1); 00426 real0 = _mm_add_ps(real0, real1); 00427 00428 im0 = _mm_add_ps(im0, real0); 00429 00430 _mm_storel_pi(p_result, im0); 00431 00432 for(i = bound * 4; i < (bound * 4) + leftovers; ++i) { 00433 00434 *result += input[i] * taps[i]; 00435 } 00436 } 00437 00438 #endif /*LV_HAVE_SSE4_1*/ 00439 00440 #endif /*INCLUDED_volk_32fc_x2_dot_prod_32fc_a_H*/