GNU Radio 3.6.5 C++ API

gri_fft.h

Go to the documentation of this file.
00001 /* -*- c++ -*- */
00002 /*
00003  * Copyright 2003,2008 Free Software Foundation, Inc.
00004  *
00005  * This file is part of GNU Radio
00006  *
00007  * GNU Radio is free software; you can redistribute it and/or modify
00008  * it under the terms of the GNU General Public License as published by
00009  * the Free Software Foundation; either version 3, or (at your option)
00010  * any later version.
00011  *
00012  * GNU Radio is distributed in the hope that it will be useful,
00013  * but WITHOUT ANY WARRANTY; without even the implied warranty of
00014  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
00015  * GNU General Public License for more details.
00016  *
00017  * You should have received a copy of the GNU General Public License
00018  * along with GNU Radio; see the file COPYING.  If not, write to
00019  * the Free Software Foundation, Inc., 51 Franklin Street,
00020  * Boston, MA 02110-1301, USA.
00021  */
00022 #ifndef _GRI_FFT_H_
00023 #define _GRI_FFT_H_
00024 
00025 /*
00026  * Wrappers for FFTW single precision 1d dft
00027  */
00028 
00029 #include <gr_core_api.h>
00030 #include <gr_complex.h>
00031 #include <boost/thread.hpp>
00032 
00033 /*! \brief Helper function for allocating complex fft buffers
00034  */
00035 gr_complex* gri_fft_malloc_complex(int size);
00036 
00037 /*! \brief Helper function for allocating float fft buffers
00038  */
00039 float* gri_fft_malloc_float(int size);
00040 
00041 /*! \brief Helper function for freeing fft buffers
00042  */
00043 void gri_fft_free(void *b);
00044 
00045 
00046 /*!
00047  * \brief Export reference to planner mutex for those apps that
00048  * want to use FFTW w/o using the gri_fftw* classes.
00049  */
00050 class GR_CORE_API gri_fft_planner {
00051 public:
00052   typedef boost::mutex::scoped_lock scoped_lock;
00053   /*!
00054    * Return reference to planner mutex
00055    */
00056   static boost::mutex &mutex();
00057 };
00058 
00059 /*!
00060  * \brief FFT: complex in, complex out
00061  * \ingroup misc
00062  */
00063 class GR_CORE_API gri_fft_complex {
00064   int         d_fft_size;
00065   int         d_nthreads;
00066   gr_complex *d_inbuf;
00067   gr_complex *d_outbuf;
00068   void       *d_plan;
00069 
00070 public:
00071   gri_fft_complex (int fft_size, bool forward = true, int nthreads=1);
00072   virtual ~gri_fft_complex ();
00073 
00074   /*
00075    * These return pointers to buffers owned by gri_fft_complex into which
00076    * input and output take place.  It's done this way in order to
00077    * ensure optimal alignment for SIMD instructions.
00078    */
00079   gr_complex *get_inbuf ()  const { return d_inbuf; }
00080   gr_complex *get_outbuf () const { return d_outbuf; }
00081 
00082   int inbuf_length ()  const { return d_fft_size; }
00083   int outbuf_length () const { return d_fft_size; }
00084 
00085   /*!
00086    *  Set the number of threads to use for caclulation.
00087    */
00088   void set_nthreads(int n);
00089 
00090   /*!
00091    *  Get the number of threads being used by FFTW
00092    */
00093   int nthreads() const { return d_nthreads; }
00094 
00095   /*!
00096    * compute FFT.  The input comes from inbuf, the output is placed in outbuf.
00097    */
00098   void execute ();
00099 };
00100 
00101 /*!
00102  * \brief FFT: real in, complex out
00103  * \ingroup misc
00104  */
00105 class GR_CORE_API gri_fft_real_fwd {
00106   int         d_fft_size;
00107   int         d_nthreads;
00108   float      *d_inbuf;
00109   gr_complex *d_outbuf;
00110   void       *d_plan;
00111 
00112 public:
00113   gri_fft_real_fwd (int fft_size, int nthreads=1);
00114   virtual ~gri_fft_real_fwd ();
00115 
00116   /*
00117    * These return pointers to buffers owned by gri_fft_real_fwd into
00118    * which input and output take place.  It's done this way in order
00119    * to ensure optimal alignment for SIMD instructions.
00120    */
00121   float *get_inbuf ()      const { return d_inbuf; }
00122   gr_complex *get_outbuf () const { return d_outbuf; }
00123 
00124   int inbuf_length ()  const { return d_fft_size; }
00125   int outbuf_length () const { return d_fft_size / 2 + 1; }
00126 
00127   /*!
00128    *  Set the number of threads to use for caclulation.
00129    */
00130   void set_nthreads(int n);
00131 
00132   /*!
00133    *  Get the number of threads being used by FFTW
00134    */
00135   int nthreads() const { return d_nthreads; }
00136 
00137   /*!
00138    * compute FFT.  The input comes from inbuf, the output is placed in outbuf.
00139    */
00140   void execute ();
00141 };
00142 
00143 /*!
00144  * \brief FFT: complex in, float out
00145  * \ingroup misc
00146  */
00147 class GR_CORE_API gri_fft_real_rev {
00148   int         d_fft_size;
00149   int         d_nthreads;
00150   gr_complex *d_inbuf;
00151   float      *d_outbuf;
00152   void       *d_plan;
00153 
00154 public:
00155   gri_fft_real_rev (int fft_size, int nthreads=1);
00156   virtual ~gri_fft_real_rev ();
00157 
00158   /*
00159    * These return pointers to buffers owned by gri_fft_real_rev into
00160    * which input and output take place.  It's done this way in order
00161    * to ensure optimal alignment for SIMD instructions.
00162    */
00163   gr_complex *get_inbuf () const { return d_inbuf; }
00164   float *get_outbuf () const { return d_outbuf; }
00165 
00166   int inbuf_length ()  const { return d_fft_size / 2 + 1; }
00167   int outbuf_length () const { return d_fft_size; }
00168 
00169   /*!
00170    *  Set the number of threads to use for caclulation.
00171    */
00172   void set_nthreads(int n);
00173 
00174   /*!
00175    *  Get the number of threads being used by FFTW
00176    */
00177   int nthreads() const { return d_nthreads; }
00178 
00179   /*!
00180    * compute FFT.  The input comes from inbuf, the output is placed in outbuf.
00181    */
00182   void execute ();
00183 };
00184 
00185 #endif